
Scent Intensification for
Testing & Debugging

Rui Abreu

Economic Relevance
• [Embedded] Software

• Exponential increase LOC

• Despite thorough design / testing, constant fault density

• Typically 5-15bugs / KLOC, 75 min / bug ➤ $4K/KLOC

• Development cost $15-30K / KLOC ➤ 15-25% diagnostic cost

• Residual defects cost US $60B/year [NIST 2002]

• estimated 20% due to fault diagnosis (downtime, labor)

The birth of debugging: your guess?

Software Errors mentioned in Ada Byron’s notes on Charles
Bababage’s analytical engine

20151840

20151840S

First actual bug and actual debugging: Admiral Grace
Hopper’s associates working on Mark II Computer at Harvard

University

1947

UNIVAC 1100’s FLIT -
Fault Localization by Interpretive Testing

20151840S 1947 1962

Weiser’s Breakthrough paper.
Input: source code and program point

20151840S 1947 1962 1981

Stallman’s GDB
Input: faulty program and 1 failed test case

20151840S 1947 1962 1981W1986

Korel and Laski’s dynamic slicing
Agrawal
Input: source code and failed test case

20151840S 1947 1962 1981W1986S 1988 1993

DDD
Input: faulty program and failed test case

20151840S 1947 1962 1981W1986S 1988 1993

Delta Debugging
Input: faulty program, 1 failed and 1 passed test case

20151840S 1947 1962 1981W1986S 1988 1993 1996

20151840S 1947 1962 1981W1986S 1988 1993 1996

Statistical Debugging
Input: faulty program, test suite

2002

20151840S 1947 1962 1981W1986S 1988 1993 1996 2002S 2007

EZUNIT

20151840S 1947 1962 1981W1986S 1988 1993 1996 2002S 2007E2009

VIDA

20151840S 1947 1962 1981W1986S 1988 1993 1996 2002S 2007E20092011/12

20151840S 1947 1962 1981W1986S 1988 1993 1996 2002S 2007E20092011/12

Also a survey paper is under review

at TSE. More than 300 works cited.

Focus of this talk
• Techniques that take into account spectra

• aka abstraction of program traces

• Spectrum-based Fault Localization (SFL)

• Statistical vs. reasoning

• Lightweight, scalable

SFL: Principle (1)

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Test
suite

t1
t2
t3
t4
t5

Integrates well with testing

SFL: Principle (2)
Test
suite

t2
t3
t4
t5

0 1 1 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Status

t1 !

Integrates well with testing

Test
suite

t3
t4
t5

1 2 2 2 2 1 1 0 2 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Status

t1 !

t2 !

SFL: Principle (3)
Integrates well with testing

Test
suite

t4
t5

1 2 2 2 2 1 1 0 2 1 1 1
1 1 1 0 1 0 0 1 1 0 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Status

t1 !

t2 !

t3 "

SFL: Principle (4)
Integrates well with testing

Test
suite

t5

1 3 3 2 3 1 1 0 3 1 3 3
1 1 1 0 1 0 0 1 1 0 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Status

t1 !

t2 !

t3 "
t4 !

SFL: Principle (5)
Integrates well with testing

Test
suite

1 3 3 2 3 1 1 0 3 1 3 3
1 2 2 0 2 0 0 2 2 1 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, pass

Touched, fail

Status

t1 !

t2 !
t3 "
t4 !
t5 "

SFL: Principle (6)
Integrates well with testing

1 3 3 2 3 1 1 0 3 1 3 3
1 2 2 0 2 0 0 2 2 1 0 0

5 6 7 8 1 2 3 4 9 10 11 12

1

2 3 5 4

6

7 8 9

10 11 12

Not touched

Touched, fail

Status

t1 !

t2 !
t3 "
t4 !
t5 "

SFL: Principle (7)

Components are
ranked according to

the likelihood of
causing detected errors

Integrates well with testing

Fault

Program

Spectra

Test Suite

class Triangle {…
 static int type(int a, int b, int c) { t1 t2 t3 t4 t5 t6 Suspiciousness

 int type = SCALENE; 0.09998
 if ((a == b) && (b == c)) 0.09998
 type = EQUILATERAL; 0.10001
 else if ((a*a) == ((b*b) + (c*c))) 0.09999
 type = RIGHT; 0.10001
 else if ((a == b) || (b == a)) /* FAULT */ 0.10000
 type = ISOSCELES; 0.10001
 return type; } 0.09998
 static double area(int a, int b, int c) {

 double s = (a+b+c)/2.0; 0.10000
 return Math.sqrt(s*(s-a)*(s-b)*(s-c)); } ... } 0.10000

25

Suspiciousness score
• Each component (row) is ranked according to their

similarity to the error vector

• Many similarity coefficients exist.

• Ochiai similarity is equivalent to the cosine of the
angle between two vectors in a n-dimensional space

Abreu, R., Zoeteweij, P., Golsteijn, R., & Van Gemund, A. J. (2009). A practical evaluation of spectrum-based fault localization. Journal of Systems and Software, 82(11), 1780-1792.
Lucia, L., Lo, D., Jiang, L., Thung, F., & Budi, A. (2014). Extended comprehensive study of association measures for fault localization. Journal of Software: Evolution and Process, 26(2).

Rank
Position Suspicious Statement Line

number Suspiciousness

1º type = EQUILATERAL; 3 0.10001
2º type = RIGHT; 5 0.10001
3º type = ISOSCELES; 7 0.10001
4º else if ((a == b) || (b == a)) /* FAULT */ 6 0.10000
5º double s = (a+b+c)/2.0; 9 0.10000
6º return Math.sqrt(s*(s-a)*(s-b)*(s-c)); 10 0.10000
7º else if ((a*a) == ((b*b) + (c*c))) 4 0.09999
8º int type = SCALENE; 1 0.09998
9º if ((a == b) && (b == c)) 2 0.09998
10º return type; } 8 0.09998

13

 = 4Cd

Diagnostic Performance

R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-Based Multiple Fault Localization”, ASE ’09

Can we do better?
• Statistics-based SFL does not reason in terms of

multiple faults

c1 c2 c3 P/F
1 0 0 1 (F)
0 1 0 1 (F)
1 0 1 1 (F)
0 1 1 1 (F)
1 1 0 0 (P)

Diagnostic report = < c3, c1, c2 >

Reasoning-based Approach
• Barinel is a reasoning-based approach

• Integrates the best of model-based diagnosis with spectra

c1 c2 c3 P/F
1 0 0 1 (F)
0 1 0 1 (F)
1 0 1 1 (F)
0 1 1 1 (F)
1 1 0 0 (P)

c1 must be faulty
c2 cannot be single fault
c3 cannot be single fault
c2, c3 cannot be double fault

Reasoning-based Approach
• Barinel is a reasoning-based approach

• Integrates the best of model-based diagnosis with spectra

c1 c2 c3 P/F
1 0 0 1 (F)
0 1 0 1 (F)
1 0 1 1 (F)
0 1 1 1 (F)
1 1 0 0 (P)

c2 must be faulty
c1 cannot be single fault
c1 cannot be single fault
c1, c3 cannot be double fault

Reasoning-based Approach
• Barinel is a spectrum-based reasoning approach

• Integrates the best of model-based diagnosis with spectra

c1 c2 c3 P/F
1 0 0 1 (F)
0 1 0 1 (F)
1 0 1 1 (F)
0 1 1 1 (F)
1 1 0 0 (P)

Summary:
c1, c2 faulty, but not single-fault
c1, c2 can be double-fault
c1,c3 nor c2,c3 can be double-fault
so {c1,c2} is the only diagnosis possible
(subsuming the triple fault {c1,c2,c3})

Spectrum-based reasoning
1. Generate sets of components that explain observed erroneous behavior

• Equivalent to compute minimal hitting set (Staccato/MHS2**)

• Given failed executions

2. Rank candidates according to their probability of being the true fault
explanation ➤ Baye’s rule

• Given both passed and failed executions

R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-Based Multiple Fault Localization”, ASE ’09
**https://github.com/npcardoso/MHS2 (citable via https://zenodo.org/record/10037) ➤ contribute to the project; send pull requests; email us!

https://zenodo.org/record/10037

%
 o

f f
au

lty
 v

er
si

on
s

0

25

50

75

100

Effort (% of program to be examined to find the fault)

0 20 40 60 80 100

Worst technique
Ideal technique

Diagnostic Performance

%
 o

f f
au

lty
 v

er
si

on
s

0

25

50

75

100

Effort (% of program to be examined to find the fault)

0 10 20 30 40 50 60 70 80 90 100

Intersection
Union
NN
DD
Tarantula
Ochiai
Sober
CrossTab
PPDG
Barinel

No similarity coefficient is s
tatistic

ally significantly better!

• Best Performing techniques still require to
inspect 10% of the code…

• 100 LOC ➤ 10LOC

• 10,000 LOC ➤ 1,000LOC

• 1,000,000 LOC ➤ 10,000LOC

How good are we?

Case To Inspect Out of / Previous

Load Problem 2 logical threads 315

Teletext Lock-Up 2 blocks 60K

NVM corrupt 96 blocks, 10 files 150K, 1.8K

Scrolling Bug 5 blocks 150K

Invisible Pages 12 blocks 150K

Tuner Problem 2 files 1.8K

Zapping Crash 1 run (15 mins) 1 day (develop)

Wrong Audio 1 run (15 mins) ½ day (expert)

Case Studies (NXP)

• Are we properly quantifying diagnostic accuracy?

• Comparing techniques based on the rankings

• Assuming perfect bug understanding

• Are we showing providing an ecosystem offering
this techniques?

Humm….

Parnin & Orso et al observed that there is a lack of
human studies! (ISSTA’11)

Human Studies

Crowbar
— http://www.crowbar.io —

Previously known as GZoltar

http://www.crowbar.io

Visualizations

• 40 participants

• Intention: GZoltar vs. IDE’s features

• Program: Xtream

• 17,389 LOC

• 306 classes and 22 packages

• 1418 unit test cases

• Injected 1 logical fault

Gouveia, C., Campos, J., & Abreu, R.. Using HTML5 visualizations in software fault localization. VISSOFT’13

User Study: Setup

RQ1: Do the proposed visualizations efficiently aid the user to quickly find a fault?

User Study: Results

RQ2: Is Crowbar a usable toolset?

0,00 1,00 2,00 3,00 4,00 5,00

Font's size/shape

Intuitive icons/buttons

Information clearly organized

Tasks quickly/easily executed

Usefulness of warnings

GZoltar response speed

No user experience needed

IDE integration relevance

Importance of visual debugging

GZoltar global experience

User Study: Results

class Triangle {…
 static int type(int a, int b, int c) { t1 t2 t3 t4 t5 t6 Suspiciousness

 int type = SCALENE; 0.09998
 if ((a == b) && (b == c)) 0.09998
 type = EQUILATERAL; 0.10001
 else if ((a*a) == ((b*b) + (c*c))) 0.09999
 type = RIGHT; 0.10001
 else if ((a == b) || (b == a)) /* FAULT */ 0.10000
 type = ISOSCELES; 0.10001
 return type; } 0.09998
 static double area(int a, int b, int c) {

 double s = (a+b+c)/2.0; 0.10000
 return Math.sqrt(s*(s-a)*(s-b)*(s-c)); } ... } 0.10000

“A confounding factor for the
usefulness of SFL is the dependency on
the quality of the existing test suite”

Importance of Testing

Rank
Position Suspicious Statement Line

number Suspiciousness

1º type = EQUILATERAL; 3 0.10001
2º type = RIGHT; 5 0.10001
3º type = ISOSCELES; 7 0.10001
4º else if ((a == b) || (b == a)) /* FAULT */ 6 0.10000
5º double s = (a+b+c)/2.0; 9 0.10000
6º return Math.sqrt(s*(s-a)*(s-b)*(s-c)); 10 0.10000
7º else if ((a*a) == ((b*b) + (c*c))) 4 0.09999
8º int type = SCALENE; 1 0.09998
9º if ((a == b) && (b == c)) 2 0.09998
10º return type; } 8 0.09998

13

 = 4Cd

Diagnostic Performance

R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-Based Multiple Fault Localization”, ASE ’09

14

H(D) = �
X

dk2D

Pr(dk) · log2(Pr(dk)), 0 H log2(M)

A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund, “Spectrum-Based Sequential Diagnosis”, AAAI ’11

Rank
Position Suspicious Statement Line

number Suspiciousness

1º type = EQUILATERAL; 3 0.10001
2º type = RIGHT; 5 0.10001
3º type = ISOSCELES; 7 0.10001
4º else if ((a == b) || (b == a)) /* FAULT */ 6 0.10000
5º double s = (a+b+c)/2.0; 9 0.10000
6º return Math.sqrt(s*(s-a)*(s-b)*(s-c)); 10 0.10000
7º else if ((a*a) == ((b*b) + (c*c))) 4 0.09999
8º int type = SCALENE; 1 0.09998
9º if ((a == b) && (b == c)) 2 0.09998
10º return type; } 8 0.09998

15

 = 3.322H(D)

Measuring Entropy

The variety of test cases is the
major factor to have
uncertainty in the ranking

class Triangle {…
 static int type(int a, int b, int c) { t1 t2 t3 t4 t5 t6 Suspiciousness

 int type = SCALENE; 0.09998
 if ((a == b) && (b == c)) 0.09998
 type = EQUILATERAL; 0.10001
 else if ((a*a) == ((b*b) + (c*c))) 0.09999
 type = RIGHT; 0.10001
 else if ((a == b) || (b == a)) /* FAULT */ 0.10000
 type = ISOSCELES; 0.10001
 return type; } 0.09998
 static double area(int a, int b, int c) {

 double s = (a+b+c)/2.0; 0.10000
 return Math.sqrt(s*(s-a)*(s-b)*(s-c)); } ... } 0.10000

17

 = 0.4⇢̄

Density of a Test Suite

A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. van Gemund, “Prioritizing tests for fault localization through ambiguity group reduction”, ASE ’11

Debugging is usually seen as a complementary activity to
software testing, typically done afterwards. However, there
are some test generation techniques that aim to improve
debugging [8], [10]. In addition, test generation — in par-
ticular, search-based testing — can also be helpful for failure
reproduction [34] as well as debugging [33].

III. ENTROPY-BASED TEST GENERATION WITH ENTBUG

This section presents ENTBUG, a novel approach to improve
fault diagnosis. ENTBUG receives a test suite as input and
produces additional test cases for that test suite, such that the
entropy in the diagnosis is reduced.

A. Calculating Entropy
Spectrum-based fault localization heavily relies on the di-

versity of coverage information across passing and failing
test cases. The variety and number of test cases are two
major factors to determine uncertainty in the ranking. Previous
work [24] has shown that variety and size are directly related
to ⇢̄, the density of the coverage matrix [21], [24], and that
this metric can be used as a proxy for entropy. The density
of a coverage matrix is the average percentage of components
covered by test cases. It is defined as follows:

⇢̄ =

1

N

·
NX

i=1

⇢(t

i

) ^ 0 ⇢̄ 1

where ⇢(t

i

) refers to the coverage density of a test case t

i

⇢(t

i

) =

|{j | a
ij

= 1 ^ 1 j M}|
M

(7)

where N and M denote the number of test cases and the
number of components, respectively. Low values of ⇢̄ mean
that test cases exercise small parts of the program (sparse
matrices), whereas high values mean that test cases tend to
involve most components of the program (dense matrices).
Intuitively, neither too-low nor too-high values of ⇢̄ are
positive. Considering the example from Figure 1, we have
⇢(t1) =

4
10 , . . . , ⇢(t6) =

2
10 . Consequently, the coverage

density is ⇢̄ =

0.4+...+0.2
6 ! ⇢̄ = 0.400, i.e., the test cases

yield a coverage matrix density of 40% (⇢̄ = 0.400).

B. Optimal Coverage Matrix Density
Our aim is to reduce the entropy of a test suite, and

the drop in entropy is known as information gain [25]. The
information gain that a (new) test case provides is determined
by the reduction of the size of the top-ranked suspect set.
Assuming there are |D| top-ranked suspects, a test t

i

with
coverage density ⇢(t

i

) reduces the top-ranked set to |D| ·⇢(t
i

)

components if t
i

fails, and to |D|·(1�⇢(t
i

)) if t
i

passes. Under
these conditions, it has been previously demonstrated [24] that
the information gain can be modeled as follows:

IG(⇢̄) = �⇢̄ · log2(⇢̄)� (1� ⇢̄) · log2(1� ⇢̄) (8)

For our running example, the value of IG is equal to �0.400 ·
log2(0.400)�(1�0.400) · log2(1�0.400) = 0.971. The value
of IG is optimal for ⇢̄ = 0.5. Hence, a technique that is able to

Algorithm 1 ENTBUG Test Generation
Input: Program ⇧, Test Suite T , Search Budget �t, Stopping

Condition C

Output: Extended Test Suite T

0

1: T

0 T

2: d |0.5� DENSITY(T)|
3: � GETFITNESSFUNCTION(T’)
4: while ¬C do
5: t

c

 EVOSUITE(⇧, �,�t)

6: if d > |0.5� DENSITY(T 0 [{t})|� ✏ then
7: T

0 T

0 [{t
c

}
8: d |0.5� DENSITY(T 0

)|
9: � GETFITNESSFUNCTION(T’)

10: end if
11: end while
12: return T

0

generate test cases such that the coverage density of the matrix
is ⇢̄ = 0.5 (provided there is a variety of test cases) will have
the capability of reducing the diagnostic ranking entropy, and
consequently improve the diagnostic quality of spectrum-based
reasoning. Our approach augments the existing test suite with
additional test cases with the goal of balancing the density of
the coverage matrix.

C. Generating Tests Guided by the Coverage Matrix Density

The coverage matrix density ⇢̄ gives us a measurable goal
to guide test generation. As we can measure the effect but
cannot construct suitable test cases systematically, this is an
ideal application for search-based software testing (SBST). In
SBST, an optimization goal is formulated as a fitness function,
and then efficient meta-heuristic search algorithms are guided
by the fitness function to generate tests.

A fitness function takes as input a candidate solution, and
calculates a numerical value representing the quality of the
candidate, such that there is a strict ordering. In our case,
the optimal solution is a test case that leads to ⇢̄ = 0.5,
consequently our fitness function for test case t for a given
test suite T is:

fitness(t) = |0.5� ⇢̄(T [{t})| (9)

This fitness function turns the problem into a minimization
problem, i.e., the optimization aims to achieve a fitness value
of 0, which is the case if a solution is found such that ⇢̄ = 0.5.

D. Entropy-based Test Suite Extension

Algorithm 1 illustrates ENTBUG’s test-generation proce-
dure. The goal of the algorithm is to extend a potentially empty
test suite with test cases for improving the diagnosis. It takes
as input the program ⇧, the original test suite T , the search
budget �t one wants to invest in generating each individual
test, and Boolean condition C which evaluates to true once the
process should stop (e.g., timeout, fixed number of test cases,
etc.). It produces an extension of T as output.

Debugging is usually seen as a complementary activity to
software testing, typically done afterwards. However, there
are some test generation techniques that aim to improve
debugging [8], [10]. In addition, test generation — in par-
ticular, search-based testing — can also be helpful for failure
reproduction [34] as well as debugging [33].

III. ENTROPY-BASED TEST GENERATION WITH ENTBUG

This section presents ENTBUG, a novel approach to improve
fault diagnosis. ENTBUG receives a test suite as input and
produces additional test cases for that test suite, such that the
entropy in the diagnosis is reduced.

A. Calculating Entropy
Spectrum-based fault localization heavily relies on the di-

versity of coverage information across passing and failing
test cases. The variety and number of test cases are two
major factors to determine uncertainty in the ranking. Previous
work [24] has shown that variety and size are directly related
to ⇢̄, the density of the coverage matrix [21], [24], and that
this metric can be used as a proxy for entropy. The density
of a coverage matrix is the average percentage of components
covered by test cases. It is defined as follows:

⇢̄ =

1

N

·
NX

i=1

⇢(t

i

) ^ 0 ⇢̄ 1

where ⇢(t

i

) refers to the coverage density of a test case t

i

⇢(t

i

) =

|{j | a
ij

= 1 ^ 1 j M}|
M

(7)

where N and M denote the number of test cases and the
number of components, respectively. Low values of ⇢̄ mean
that test cases exercise small parts of the program (sparse
matrices), whereas high values mean that test cases tend to
involve most components of the program (dense matrices).
Intuitively, neither too-low nor too-high values of ⇢̄ are
positive. Considering the example from Figure 1, we have
⇢(t1) =

4
10 , . . . , ⇢(t6) =

2
10 . Consequently, the coverage

density is ⇢̄ =

0.4+...+0.2
6 ! ⇢̄ = 0.400, i.e., the test cases

yield a coverage matrix density of 40% (⇢̄ = 0.400).

B. Optimal Coverage Matrix Density
Our aim is to reduce the entropy of a test suite, and

the drop in entropy is known as information gain [25]. The
information gain that a (new) test case provides is determined
by the reduction of the size of the top-ranked suspect set.
Assuming there are |D| top-ranked suspects, a test t

i

with
coverage density ⇢(t

i

) reduces the top-ranked set to |D| ·⇢(t
i

)

components if t
i

fails, and to |D|·(1�⇢(t
i

)) if t
i

passes. Under
these conditions, it has been previously demonstrated [24] that
the information gain can be modeled as follows:

IG(⇢̄) = �⇢̄ · log2(⇢̄)� (1� ⇢̄) · log2(1� ⇢̄) (8)

For our running example, the value of IG is equal to �0.400 ·
log2(0.400)�(1�0.400) · log2(1�0.400) = 0.971. The value
of IG is optimal for ⇢̄ = 0.5. Hence, a technique that is able to

Algorithm 1 ENTBUG Test Generation
Input: Program ⇧, Test Suite T , Search Budget �t, Stopping

Condition C

Output: Extended Test Suite T

0

1: T

0 T

2: d |0.5� DENSITY(T)|
3: � GETFITNESSFUNCTION(T’)
4: while ¬C do
5: t

c

 EVOSUITE(⇧, �,�t)

6: if d > |0.5� DENSITY(T 0 [{t})|� ✏ then
7: T

0 T

0 [{t
c

}
8: d |0.5� DENSITY(T 0

)|
9: � GETFITNESSFUNCTION(T’)

10: end if
11: end while
12: return T

0

generate test cases such that the coverage density of the matrix
is ⇢̄ = 0.5 (provided there is a variety of test cases) will have
the capability of reducing the diagnostic ranking entropy, and
consequently improve the diagnostic quality of spectrum-based
reasoning. Our approach augments the existing test suite with
additional test cases with the goal of balancing the density of
the coverage matrix.

C. Generating Tests Guided by the Coverage Matrix Density

The coverage matrix density ⇢̄ gives us a measurable goal
to guide test generation. As we can measure the effect but
cannot construct suitable test cases systematically, this is an
ideal application for search-based software testing (SBST). In
SBST, an optimization goal is formulated as a fitness function,
and then efficient meta-heuristic search algorithms are guided
by the fitness function to generate tests.

A fitness function takes as input a candidate solution, and
calculates a numerical value representing the quality of the
candidate, such that there is a strict ordering. In our case,
the optimal solution is a test case that leads to ⇢̄ = 0.5,
consequently our fitness function for test case t for a given
test suite T is:

fitness(t) = |0.5� ⇢̄(T [{t})| (9)

This fitness function turns the problem into a minimization
problem, i.e., the optimization aims to achieve a fitness value
of 0, which is the case if a solution is found such that ⇢̄ = 0.5.

D. Entropy-based Test Suite Extension

Algorithm 1 illustrates ENTBUG’s test-generation proce-
dure. The goal of the algorithm is to extend a potentially empty
test suite with test cases for improving the diagnosis. It takes
as input the program ⇧, the original test suite T , the search
budget �t one wants to invest in generating each individual
test, and Boolean condition C which evaluates to true once the
process should stop (e.g., timeout, fixed number of test cases,
etc.). It produces an extension of T as output.

0.0

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IG(⇢̄)

18R. A. Johnson, “An information theory approach to diagnosis”, IRE Transactions on Reliability and Quality Control, no. 1, pp. 35–35, 1960

A fitness function based on
entropy to guide search-based
test generation and to optimize
the quality of ranking reports

Debugging is usually seen as a complementary activity to
software testing, typically done afterwards. However, there
are some test generation techniques that aim to improve
debugging [8], [10]. In addition, test generation — in par-
ticular, search-based testing — can also be helpful for failure
reproduction [34] as well as debugging [33].

III. ENTROPY-BASED TEST GENERATION WITH ENTBUG

This section presents ENTBUG, a novel approach to improve
fault diagnosis. ENTBUG receives a test suite as input and
produces additional test cases for that test suite, such that the
entropy in the diagnosis is reduced.

A. Calculating Entropy
Spectrum-based fault localization heavily relies on the di-

versity of coverage information across passing and failing
test cases. The variety and number of test cases are two
major factors to determine uncertainty in the ranking. Previous
work [24] has shown that variety and size are directly related
to ⇢̄, the density of the coverage matrix [21], [24], and that
this metric can be used as a proxy for entropy. The density
of a coverage matrix is the average percentage of components
covered by test cases. It is defined as follows:

⇢̄ =

1

N

·
NX

i=1

⇢(t

i

) ^ 0 ⇢̄ 1

where ⇢(t

i

) refers to the coverage density of a test case t

i

⇢(t

i

) =

|{j | a
ij

= 1 ^ 1 j M}|
M

(7)

where N and M denote the number of test cases and the
number of components, respectively. Low values of ⇢̄ mean
that test cases exercise small parts of the program (sparse
matrices), whereas high values mean that test cases tend to
involve most components of the program (dense matrices).
Intuitively, neither too-low nor too-high values of ⇢̄ are
positive. Considering the example from Figure 1, we have
⇢(t1) =

4
10 , . . . , ⇢(t6) =

2
10 . Consequently, the coverage

density is ⇢̄ =

0.4+...+0.2
6 ! ⇢̄ = 0.400, i.e., the test cases

yield a coverage matrix density of 40% (⇢̄ = 0.400).

B. Optimal Coverage Matrix Density
Our aim is to reduce the entropy of a test suite, and

the drop in entropy is known as information gain [25]. The
information gain that a (new) test case provides is determined
by the reduction of the size of the top-ranked suspect set.
Assuming there are |D| top-ranked suspects, a test t

i

with
coverage density ⇢(t

i

) reduces the top-ranked set to |D| ·⇢(t
i

)

components if t
i

fails, and to |D|·(1�⇢(t
i

)) if t
i

passes. Under
these conditions, it has been previously demonstrated [24] that
the information gain can be modeled as follows:

IG(⇢̄) = �⇢̄ · log2(⇢̄)� (1� ⇢̄) · log2(1� ⇢̄) (8)

For our running example, the value of IG is equal to �0.400 ·
log2(0.400)�(1�0.400) · log2(1�0.400) = 0.971. The value
of IG is optimal for ⇢̄ = 0.5. Hence, a technique that is able to

Algorithm 1 ENTBUG Test Generation
Input: Program ⇧, Test Suite T , Search Budget �t, Stopping

Condition C

Output: Extended Test Suite T

0

1: T

0 T

2: d |0.5� DENSITY(T)|
3: � GETFITNESSFUNCTION(T’)
4: while ¬C do
5: t

c

 EVOSUITE(⇧, �,�t)

6: if d > |0.5� DENSITY(T 0 [{t})|� ✏ then
7: T

0 T

0 [{t
c

}
8: d |0.5� DENSITY(T 0

)|
9: � GETFITNESSFUNCTION(T’)

10: end if
11: end while
12: return T

0

generate test cases such that the coverage density of the matrix
is ⇢̄ = 0.5 (provided there is a variety of test cases) will have
the capability of reducing the diagnostic ranking entropy, and
consequently improve the diagnostic quality of spectrum-based
reasoning. Our approach augments the existing test suite with
additional test cases with the goal of balancing the density of
the coverage matrix.

C. Generating Tests Guided by the Coverage Matrix Density

The coverage matrix density ⇢̄ gives us a measurable goal
to guide test generation. As we can measure the effect but
cannot construct suitable test cases systematically, this is an
ideal application for search-based software testing (SBST). In
SBST, an optimization goal is formulated as a fitness function,
and then efficient meta-heuristic search algorithms are guided
by the fitness function to generate tests.

A fitness function takes as input a candidate solution, and
calculates a numerical value representing the quality of the
candidate, such that there is a strict ordering. In our case,
the optimal solution is a test case that leads to ⇢̄ = 0.5,
consequently our fitness function for test case t for a given
test suite T is:

fitness(t) = |0.5� ⇢̄(T [{t})| (9)

This fitness function turns the problem into a minimization
problem, i.e., the optimization aims to achieve a fitness value
of 0, which is the case if a solution is found such that ⇢̄ = 0.5.

D. Entropy-based Test Suite Extension

Algorithm 1 illustrates ENTBUG’s test-generation proce-
dure. The goal of the algorithm is to extend a potentially empty
test suite with test cases for improving the diagnosis. It takes
as input the program ⇧, the original test suite T , the search
budget �t one wants to invest in generating each individual
test, and Boolean condition C which evaluates to true once the
process should stop (e.g., timeout, fixed number of test cases,
etc.). It produces an extension of T as output.

yesno
add to the test suite

new test (t)EvoSuite

20

ENTBUG

Campos, J., Abreu, R., Fraser, G., & d'Amorim, M. Entropy-based test generation for improved fault localization. ASE’13.

T T + {t7} T + {t7, t8} T + {t7, t8, t9}

class Triangle {…
 static int type(int a, int b, int c) {

º Suspiciousness t7 º Suspiciousness t8 º Suspiciousness t9 º Suspiciousness

 int type = SCALENE; 8 0.09998 1 6 0.03629 1 6 0.02354 1 5 0.04347

 if ((a == b) && (b == c)) 9 0.09998 1 7 0.03629 1 7 0.02354 1 6 0.04347

 type = EQUILATERAL; 1 0.10001 1

 else if ((a*a) == ((b*b) + (c*c))) 7 0.09999 1 5 0.08466 3 0.10983 1 2 0.17391

 type = RIGHT; 2 0.10001 1 1 0.29033 1 0.37666

 else if ((a == b) || (b == a)) /* FAULT */ 4 0.10000 1 2 0.17204 2 0.22320 1 1 0.34782

 type = ISOSCELES; 3 0.10001

 return type; } 10 0.09998 1 8 0.03629 1 8 0.02354 1 7 0.04347

 static double area(int a, int b, int c) {
 double s = (a+b+c)/2.0; 5 0.10000 1 3 0.17204 1 4 0.10983 1 3 0.17391

 return Math.sqrt(s*(s-a)*(s-b)*(s-c)); } ... } 6 0.10000 1 4 0.17204 1 5 0.10983 1 4 0.17391

Test case outcome (pass = , fail =)

0.400 0.457 0.475 0.500

3.322 2.651 2.445 2.437

4.000 2.000 1.000 0.000

Debugging is usually seen as a complementary activity to
software testing, typically done afterwards. However, there
are some test generation techniques that aim to improve
debugging [8], [10]. In addition, test generation — in par-
ticular, search-based testing — can also be helpful for failure
reproduction [34] as well as debugging [33].

III. ENTROPY-BASED TEST GENERATION WITH ENTBUG

This section presents ENTBUG, a novel approach to improve
fault diagnosis. ENTBUG receives a test suite as input and
produces additional test cases for that test suite, such that the
entropy in the diagnosis is reduced.

A. Calculating Entropy
Spectrum-based fault localization heavily relies on the di-

versity of coverage information across passing and failing
test cases. The variety and number of test cases are two
major factors to determine uncertainty in the ranking. Previous
work [24] has shown that variety and size are directly related
to ⇢̄, the density of the coverage matrix [21], [24], and that
this metric can be used as a proxy for entropy. The density
of a coverage matrix is the average percentage of components
covered by test cases. It is defined as follows:

⇢̄ =

1

N

·
NX

i=1

⇢(t

i

) ^ 0 ⇢̄ 1

where ⇢(t

i

) refers to the coverage density of a test case t

i

⇢(t

i

) =

|{j | a
ij

= 1 ^ 1 j M}|
M

(7)

where N and M denote the number of test cases and the
number of components, respectively. Low values of ⇢̄ mean
that test cases exercise small parts of the program (sparse
matrices), whereas high values mean that test cases tend to
involve most components of the program (dense matrices).
Intuitively, neither too-low nor too-high values of ⇢̄ are
positive. Considering the example from Figure 1, we have
⇢(t1) =

4
10 , . . . , ⇢(t6) =

2
10 . Consequently, the coverage

density is ⇢̄ =

0.4+...+0.2
6 ! ⇢̄ = 0.400, i.e., the test cases

yield a coverage matrix density of 40% (⇢̄ = 0.400).

B. Optimal Coverage Matrix Density
Our aim is to reduce the entropy of a test suite, and

the drop in entropy is known as information gain [25]. The
information gain that a (new) test case provides is determined
by the reduction of the size of the top-ranked suspect set.
Assuming there are |D| top-ranked suspects, a test t

i

with
coverage density ⇢(t

i

) reduces the top-ranked set to |D| ·⇢(t
i

)

components if t
i

fails, and to |D|·(1�⇢(t
i

)) if t
i

passes. Under
these conditions, it has been previously demonstrated [24] that
the information gain can be modeled as follows:

IG(⇢̄) = �⇢̄ · log2(⇢̄)� (1� ⇢̄) · log2(1� ⇢̄) (8)

For our running example, the value of IG is equal to �0.400 ·
log2(0.400)�(1�0.400) · log2(1�0.400) = 0.971. The value
of IG is optimal for ⇢̄ = 0.5. Hence, a technique that is able to

Algorithm 1 ENTBUG Test Generation
Input: Program ⇧, Test Suite T , Search Budget �t, Stopping

Condition C

Output: Extended Test Suite T

0

1: T

0 T

2: d |0.5� DENSITY(T)|
3: � GETFITNESSFUNCTION(T’)
4: while ¬C do
5: t

c

 EVOSUITE(⇧, �,�t)

6: if d > |0.5� DENSITY(T 0 [{t})|� ✏ then
7: T

0 T

0 [{t
c

}
8: d |0.5� DENSITY(T 0

)|
9: � GETFITNESSFUNCTION(T’)

10: end if
11: end while
12: return T

0

generate test cases such that the coverage density of the matrix
is ⇢̄ = 0.5 (provided there is a variety of test cases) will have
the capability of reducing the diagnostic ranking entropy, and
consequently improve the diagnostic quality of spectrum-based
reasoning. Our approach augments the existing test suite with
additional test cases with the goal of balancing the density of
the coverage matrix.

C. Generating Tests Guided by the Coverage Matrix Density

The coverage matrix density ⇢̄ gives us a measurable goal
to guide test generation. As we can measure the effect but
cannot construct suitable test cases systematically, this is an
ideal application for search-based software testing (SBST). In
SBST, an optimization goal is formulated as a fitness function,
and then efficient meta-heuristic search algorithms are guided
by the fitness function to generate tests.

A fitness function takes as input a candidate solution, and
calculates a numerical value representing the quality of the
candidate, such that there is a strict ordering. In our case,
the optimal solution is a test case that leads to ⇢̄ = 0.5,
consequently our fitness function for test case t for a given
test suite T is:

fitness(t) = |0.5� ⇢̄(T [{t})| (9)

This fitness function turns the problem into a minimization
problem, i.e., the optimization aims to achieve a fitness value
of 0, which is the case if a solution is found such that ⇢̄ = 0.5.

D. Entropy-based Test Suite Extension

Algorithm 1 illustrates ENTBUG’s test-generation proce-
dure. The goal of the algorithm is to extend a potentially empty
test suite with test cases for improving the diagnosis. It takes
as input the program ⇧, the original test suite T , the search
budget �t one wants to invest in generating each individual
test, and Boolean condition C which evaluates to true once the
process should stop (e.g., timeout, fixed number of test cases,
etc.). It produces an extension of T as output.

where " is defined as

" =

8
>><

>>:

Y

j2d

k

^a

ij

=1

h

j

if e
i

= 0

1�
Y

j2d

k

^a

ij

=1

h

j

if e
i

= 1

(4)

and a

ij

represents the coverage of the component j when
the test i is executed. As this information is typically not
available, the values for h

j

2 [0, 1] are determined by maxi-
mizing Pr(obs|d

k

) using maximum likelihood estimation [2].
To solve the maximization problem, a simple gradient ascent
procedure [9] (bounded within the domain 0 < h

j

< 1) is
applied.

Pr(obs
i

) represents the probability of the observed outcome,
independently of which diagnostic explanation is the correct
one and thus needs not be computed directly. The value of
Pr(obs

i

) is a normalizing factor given by

Pr(obs
i

) =

X

d

k

2D

Pr(obs
i

|d
k

) · Pr(d
k

) (5)

The BARINEL framework is used in our approach to com-
pute the probabilities of each diagnosis candidate d

k

. Further
information about the framework and underlying technique
can be found in [2]. When compared to other spectrum-based
approaches to fault localization [2], BARINEL yields more
information rich diagnostic reports due to the fact that it also
reasons in terms of multiple faults. To illustrate this approach,
the following probabilities are computed for the example in
Figure I after executing test suite T (for detailed information
about the probabilities, see Table I)

d1 = {c1}, ! Pr(obs|d1) = 1⇥ h3 ! 0.099984

. . .

d10 = {c10}, ! Pr(obs|d10) = 2⇥ h10 ! 0.100004

After computing the probabilities for each d

k

2 D, the
candidates are ranked and shown to the user in descending
order of probability to be the true fault explanation (see
Table I).

B. Diagnostic Report Entropy

While debugging, developers can resort to the diagnostic
ranking of diagnosis candidates yielded by BARINEL to pin-
point the root cause of observed failures quickly. This can
be done by inspecting the ranked candidates in a descending
order according to the diagnostic probabilities.

As the diagnostic ranking assigns probabilities to the di-
agnosis candidates, one may compute an entropy-based score
quantifying the reliability of the ranking; this score conveys
how confident one can be that the ranking helps finding
the fault. The entropy H(D) [22], [40] intuitively serves to
quantify the capability to distinguish candidates in the set
D. For example, the value of H(D) is very high for the set
D = {0.3, 0.5, 0.5, 0.5} because we have several elements
in the set with the same value. Therefore, it is difficult to
distinguish which element is more relevant, i.e., which of

the candidates in the example with probability 0.5 of being
faulty can explain the fault better. The minimum value (i.e.,
approximate ideal) for H is zero, in which case all elements in
the set can be distinguished from one another. In our context,
the maximum value is log2(M), where M is the number of
components. So, H(D) can be defined as:

H(D) = �
X

d

k

2D

Pr(d
k

) · log2(Pr(d
k

)), 0 H log2(M)

(6)
In the Triangle example we have 10 components

(c1, . . . , c10), and to represent the whole set C, in theory, we
need 2

M states

2

x � M ! x = log2(M) ! x = log2(10) ! x = 3.322

So, the best value of H is the minimum value (zero) and the
worst value is the maximum (log2(H)), 0 H(D) 3.322.
Therefore, the entropy for the example is

H(D) = �
⇣
0.099984 · log2(0.099984) + . . .

+ 0.100004 · log2(0.100004)
⌘
= 3.322

which corresponds to the maximum value. This means that
the ranking suffers considerably from uncertainty, and we
cannot distinguish which components are most probably at
fault. Therefore, we are not able to properly diagnose the faulty
program.

C. Automated Test Generation

The basis for a diagnosis is a test suite, and often the
existing test suite is not optimized for producing high-quality
diagnostic reports. Hence, is important to generate tests to
improve diagnosis. There are many available test generation
techniques [7]; Search-Based Software Testing (SBST) [28]
is well suited for our scenario, as it has the distinct ability
to optimize test cases and test suites based on custom non-
functional properties. For example, SBST can generate test
suites optimized for coverage and size at the same time,
and SBST is also well suited to address test generation in
a diagnosis context [10], [33].

SBST uses meta-heuristic algorithms to generate test cases
for user-informed objectives. Global search algorithms such as
Genetic Algorithms (GAs) are popular for domains where the
neighbourhood of a candidate solution is very large, such as
for example for unit tests represented as sequences of method
calls. The EVOSUITE tool [17] uses GA to generate test suites
for Java classes with respect to a given coverage criterion. The
GA starts with an initial population of randomly-generated
candidate solutions. A fitness function determines, for each
individual of the population, a numerical value estimating its
distance to the optimal solution. Individuals are selected from
the population; those with better fitness value have higher
probability of being selected. Selected individuals “evolve”
according to pre-defined operators, and form a new population.
This procedure continues until it either finds an optimal
solution, or runs out of resources (e.g., it reaches timeout).

Cd

21

 = 0.0Cd

 = 0.500⇢̄

 -27%H(D)

• Available as an Eclipse plug-in

• a Visual Studio plugin will
be released soon

• Also available as a library

• Instrumentation and
diagnosis

• Testing features are yet to be
deployed

• Only test suite
minimization available

http://www.gzoltar.com

http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com
http://www.gzoltar.com

• Open Eclipse

• Install Crowbar

• Help ➤ Install New Software

• http://crowbar.io/plugin/tarot/

• Window ➤ Other… ➤ Crowbar Views ➤ Diagnostic Reports

• Import (as maven project) buggy yodaTime

• http://crowbar.io/plugin/tarot/buggy_yodatime.zip

• Find the bug!

Let’s use it

http://crowbar.io/plugin/tarot/
http://crowbar.io/plugin/tarot/

• Integration with software repository mining

• Use fitness function in test suite prioritization and
minimization

• Generation: How to solve the oracle problem?

• Human in the loop

• AutoSeer project: leverage program invariants

• Explore idiosyncrasies of mobile devices

Opportunities and Challenges

Questions?

