Active and Passive Testing in an
Industrial Setting

Show the evolution of active testing
to monitoring (passive testing)
techniques

Explain the differences and
complementarity of these
techniques

Application to an industrial case
study

» OQur research model is based in:

- Basic and applied research
- Evaluation of results in real environments

- Strong collaboration with industrial partners

upDi

E{I
(&
1§

SOAPIXML

Figure 1: The process flow of a Web service

» Testing: The process of executing software with
the intent of finding and correcting faults

» Conformance testing: The process of checking if
the implementation under test conforms the
specification

Two techniques: active and passive testing (monitoring)

This presentation will focus on both of them, to show
that there are many common objectives and challenges

-~ - -

- g . - - =

E 4 - A — e T Tea ¥V % - ey B -

D ——
PASS,

FAIL,
INCONC.

Formal
Specification

Usually called Model Based Testing (MBT)

It is assumed that the tester controls the implementation. Control
means: after sending an input and after receiving an output, the
tester knows what is the next input to be send

The tester can guide the implementation towards specific states
Automatic test generation methods can be defined

Usually a test case is a set of input sequences

SE A

\y\

=
)

9,

Vhat is monitoring (passive testing

j\ D)

) ?

@

[

~PO

N I B Trace Verdict:
|| Collection PASS,
1 V FAIL,

~ System User - INCONC.

Passive testing consists in analyzing the traces recorded from the
IUT and trying to find a fault by comparing these traces with either
the complete specification or by verifying some specifics
requirements (or properties) during normal runtime

No interferences with the IUT
It is also referred to as monitoring

{l‘?ﬂ“{ . ?/I 7\ /’[f'_f r/:I'f,"/“/,{uVﬁ G R BTG W 7///// 7/%

G
v’\ﬂ%«{ﬁlﬂ, i _’:,,
: kI

l\ ¢
I
X 1 i
st

LA
;;'v\

‘—-q

AN

g \\:}\u
Wiy k\
o
'.'*}0{% . ‘

.

\\,-.-og_*"'_ e — TPy ——

B

-
L

-

l%‘

0.0

RO
N S

——
oy

....-
i e
e N

‘f

a ,-_S.S’_\ 2

Specification

2€ [OK
— T

1 1€/another1€© 1€/OK /4

Choice / Soda, Juice

I1
2€ [yet another 1€

@ther 1€ ‘ 1€D

Choice / Soda, Juice

__~output fault

I2
2€ / OK transfer fault

A
1€ / another 1€ | 1€ /| OK

Choice / Soda, Juice

I3
1€ / another 1€

Choice /

Soda, Juice 1€/ 0K

2€ [OK

» How to bring the finite state machine
implementation into any given state at any given
time during testing ?

Non trivial problem because of limited

controllability of the finite state machine
implementation

It may not be possible to put the finite state
machine into the head state of the transition
being tested without realizing several transitions

Controllable Non controllable

Specification Impl Imp2

[a/ b [a/b aly \a/b
Controllable under fairness
assumption

Imp3 Imp4 Imp5

a/%\s/b s/b/\a/b a/b /\a/c

Non controllable

» How to verify that the finite state machine
implementation is in a correct state after
input/output exchange?

State identification problem. Difficult because of limited
observability of the finite state machine implementation, it
may not be possible to directly verify that the finite state

machine is in the desired tail state after the transition has
been fired

» To solve this problem different
methods have been proposed:
DS (Distinguishing Sequence)
UIO (Unique Input/Output Sequence)
W (Distinction Set)

c/x Define an input sequence for each state
5 such that the output sequence

generated is unique to that state.
Detects output and transfer faults.

State UIO sequences
S1 c/x
S2 c/y
S3 b/y

cl/z Testof (1): a/y a/xb/y
Testof (2): a/y c/zb/y

b/X

J

c/x

Test of (1): a/y a/x b/y
Testof (2): a/y c/z b/y

Application du test of (1) to
the implementation: a/y a/x
b/z (transfer error)

Application of test (2) to
the implementation:
a/y c¢/x (output error)

Faulty Implementation

Non applicable when no direct access to
the implementation under test

Semi- controllable interfaces
(component testing)

Interferences on the behaviour of the
implementation

» Test in context, embedded testing:

O Tests focused on some
components of the system, to
avoid redundant tests

Environment

ab’cc’ b a’

O Interfaces semi-controllables

O In some cases it is not possible to
apply active testing

Conformance testing is essentially focused on
verifying the conformity of a given implementation
to its specification

It is based on the ability of a tester that stimulates the
implementation under test and checks the correction of the

answers provided by the implementation
Closely related to the controllability of the IUT

In some cases this activity becomes difficult, in particular:
if the tester has not a direct interface with the implementation

or when the implementation is built from components that have
to run in their environment and cannot be shutdown or
interrupted (for long time) in order to test them

» Controllability

No controllability issue because no interaction with the
implementation under test

» Observability

It is assumed that to perform passive testing it is necessary to
observe the messages exchanges between modules.

Passive testing is a Grey Box testing technique

» Fault detection using passive testing

It is possible to detect output faults

It is possible to detect transfer faults under some hypothesis:
to initialise the IUT in order to be sure that the
implementation is in the initial state and then perform passive
testing

In this approach a set of properties are extracted from the
specification or proposed by the protocol experts, and then
the trace resulting from the implementation is analyzed to
determine whether it validates this set of properties.

These extracted set of properties are called invariants
because they have to hold true at every moment.

» Definition: an invariant is a property that is
always true.

» Two test steps:

Extraction of invariants from the specification or
proposed by protocol experts

Application of invariants on execution event
traces from implementation

* Solution: I/O invariants

_©

» An invariant is composed of two parts :
o The test (an input or an output)
o The preamble (I/O sequence)

» 3 kind of invariants :
o Output invariant (simple invariant)

o Input invariant (obligation invariant)
o Succession invariant (loop invariant)

Definition : invariant in which the test is an
output

Meaning : « immediatly after the sequence
préambule there 1s always the expected
output »

Example :

(i,/0,) (1, / 0,)

(preambule in blue, expected output in red)

Definition : invariant in which the test is an
input

Meaning : « immediatly before the sequence
preamble there is always the input test »

Example :

(i,/0,) (1, / 0,)

(preamble in blue, test in red)

* Definition : I/O invariant for complex
properties (loops ...)
» Example :

the 3 invariants below build the property :
« only the third i, is followed by o, »

(i, /0 (1, / 0,)
(1, /0,) @,/ 0,) (i, / 0,)
(1, /0, 4,/ 0,) (A, /0,) (i, / 0,)

O A trace as 1,/0,,..., 1../0O:+, 1. /O 1s a simple invariant if each
time that the trace i./0.,..., 1../0..1s observed, if we obtain
the input i.then we necessarily get an output belonging
to O, where O is included in the set of expected outputs.

o 1/0, *, /0O means that if we detect the transition i/o
then the first occurrence of the symbol i’ is followed by
an output belonging to the set O.

O *replaces any sequence of symbols not containing the
input symbol i’ and ? replaces any input or output.

Invariants | Verdict
al?,clz, by} | True
b/z, al{x} False
a/x, *, b/{y, z} | True
aly, 2/{z} False
al{x} False
alx, *, 2{y} True

3)= ax

Traces

a/yc/zb/yalya/xc/zb/y

c/xa/ya/xc/zb/y

c/ya/xb/zb/xaly

e Ie=——> Verdict: © Possibility to focus on a

PASS, FAIL, specific part of the
INCONC. specification
l © Full test generation
automation

Formal
Specification

@ Needs a model
@ May modify (crash) the IUT

behavior
C:I:::::'JU — Passive Tester N © No interferences with the IUT
I Collection PASS,FAIL, © No models needed

INCONC. © Full monitoring automation
| System User | i
® Grey box testing

Monitoring of routing protocols for ad hoc (OLSR
protocol) and mesh networks based on a
distributed approach (Batman protocol) (TSP)

Monitoring for secure interoperability —

Application to a multi-source information system
(T'SP)

Monitoring with time constraints (C. Andres, M.
Nuhez and M. Merayo)

Other works by (T. Jeron and H. Marchand, A.
Ulrich and A. Petrenko)

Approach proposed by researchers of verification
(model checking) community

Passive testing developed by the testing
community

EAGLE and RuleR tools proposed by Barringer
and al. in 2004 and 2010 respectively, based on
temporal logics and rewriting rules for properties
description

Others tools: Tracematches, [Avgustinov et al.

2007], J-LO [Bodden 2005]and LSC [Maoz and
Harel 2006]

Interoperable Trust Assurance Infrastructure

Y ma o —
TELECOM| TELECOM ' /4. SEARCH-LAB
50#6(0 e montlmage k—-& [\\<\\°I>/} SECURITY EVALUATION ANALYSIS

/;gsmaf =0 AND RESEARCH LABORATORY
information technology Iﬁgml

s Scytl indra m" Uerg‘;rcil: l‘.’l‘; o

Innovating Democracy UNIVERSITAT ROVIRA | VIRGILI

» Project co-funded by the European Union under the Information and
Communication Technologies theme of the 7th Framework Programme for
R&D ICT-2011.1.4 Trustworthy ICT contract n. 317731

» November 2012 — April 2015 (30 months)
* www.inter-trust.eu

e A S - - S

» Develop a dynamic anggcalable framework

o to support trustworthy services in heterogeneous
networks and devices

o based on the enforcement of interoperable and
changing security policies
» Addressing the needs of developers, integrators
and operators

o to develop and operate systems in a secure trusted
manner

o dictated by negotiated security policies through
dynamic security SLAs

» Separate the security concerns from the
functional requirements => AOP

Validation

Validate the architecture, techniques and tools developed using two
completely different case studies with complex, high-demanding
critical services

V2X communications

E-Voting

o The INTER-TRUST framework allows the secure interoperation
enforcement and supervision between communicating and
heterogeneous systems. It allows:

The negotiation and adaptability of security policies according to the
available resources and changes in the environment

The dynamic deployment of negotiated security policies using a selected
AOP framework

The automatic verification and validation of security policies by means of
testing & monitoring techniques

—
— - - - -

\ ~
A -
\-.--\/——\— \.L\.—\-.———\.\-.\.\..——\-.

DEVICE

Dynamic
specification of

security policies
(SLASs)

Application
+ Context
Monitoring

Dynamic
deployment of
security policies

Testing for
Vulnerabilities
detection

Application (E-voting, ITS, etc.)

o A - -

-

-

—

. -

- -

¥y Nt 2 e . - £ A 4 X T A A A A A - I B

DEVICE

Dynamic

deployment of
security policies

Application
+ Context
Monitoring

Testing for
Vulnerabilities
detection

—

- A - - - - - -

— — - _ . e - S— FrY /8 29 L o £ R b X L B A A B A - L B

DEVICE

Application
+ Context
Monitoring

Testing for
A Vulnerabilities
detection

DEVICE

0
A a
@,

0 all(
010 C
a 0

J
crap
..‘

v ' | - @ J JI < r 2 2L
I-T Framework architecture
------------- -
DEVICE
D 0 O 0
e 50 S 00
arprete A AlE a
0 atio
A NE
odule
eneratio
agotiatio = E i
adule ASPE odule A ~
SV s 00

DEVICE

Monitoring

Context tool
-
Awareness '

Notification
Module

Fuzz

Test init test. tool
Module

Active
test. tool

"

* Why testing ? (testing phase)
Vulnerabilities can be introduced by AOP used in Inter-trust
Functional testing
Check the respect of weaved security policies (aspects)
Check the robustness of the target application | (¢ g

o
/

Detect vulnerabilities e &,

Simulate attacks

*» Why monitoring ? (testing & operation phases) A
Same as above PN
+ detecting context changes (context awareness) at runtime

| Application FSM L
i [— > Model (IF) |~ o=l
Functional | ~ N
- ’ A Y
Requirements : // TestGen-IF ¢ {7 \\\
L 1 Test Engineer \
i‘ Test —,L ' CEMN- | Testing ——.»
iy Generation J $::{;w scripts S e
a
N, ,l

____________ 1 & ‘__“_—/_/’ 1 \
: Init testing
! TesstE;:;iit:eer TAOTER secuitypeca \
= [] are=
Requirements L e
‘.,H

Monitoring

/v Server
Evoting application

1

1

1

1

1

I 3

: Notifcation | (»? montimage

|

Attack 1 (T
models 1

1 Security

1

1

1

Expert - Security
g Properties

» Generation of tests from IF model and test purposes
Target: functional, security properties, attacks*

» Execution relying on Selenium (Web interface)
» Detecting failures using MMT

v

~——————————lam=inllggin password) / access denied ¢ ——

Elections - Logged as Bob — 5 AIJAVE Lp

F

Question L1

Al: Sports

Question L12

Seytl
@ onine L1: Interest market
Vote Verification \
Voting

Log Out Signedin as loginl

Veting Receipt

Yourvote has been issued comecty. The voting receiptis your receipt document W recommend that you print it

[

The E-voting
application has been
specified as an
extended finite state
machine (IF
language)

)
1Ser
)ose
ons
Step3of3

(e12Eane/NnPT+uTkB azEHdrXasBCZyPXLVhVH/UhDog8Qznh GUNyZYgNfaqBUCYvmpvenSsCQEHoJ8f KT94wdmkMatChbend +
DkSBGA1rex8JLUSCYFUBJMn vAdWbFuYCOK2AKSRTAXVSI.0! jBge +wS6QeddI6lelsRak2eKvasKurHghve tw!“

\\1 This state presents the

\

the effective vote

In this step the vote
choices are displayed. N
The user has to fill the

vote form. The step is

\S

J

J

Test Objective specification

Test generation with TestGen-IF

kagindlogin, sword) [access deniad
Test Dhjectnee | it
(Setdietalle legin(log in password) / access_authorized
Description
The tester chooses specific sets of privacy ocptions. - exit
Cur objective is to check the behavior of the systermn 1 1ok
when the user chooses a certain axit ort op1 op2.ops)
combination of privacy options.
i [cond=nokjchoose{votes)
W
Formal specification g
ond=ok]choose{voles]
obji = condl “cond2”*cond3"condd"cond5 fori=1...27 - e e d
condl = process: instance = {server}d
cond2 = state: source: privacy_optio
cond3 = state: destination: electi
condd = action: input
options{optionpoplj onpop3l) i change{options}
L

4 O

This part of the TestGen-IF tool aims

to choose the test objective. Each test

objective is presented with its —
. description and formal specification.

N /

4 B n | _ , > -
1est case Generation

3 sw ppiaion LY . o

gy gt .1y —

login{login,password) / access denied

Test generation with TestGen-IF

Test Objective

pree Biuite Tersion bgin login{login,password) [access_authorized . (‘_“\

Description .
The tester tries to find the correct password in order to - 97/ \

connect as a Bob user,
Our objective is to check the behavior of the system when an

ttacker (misuser) = .
atri::tsrfinmdls’;?;}asmord by guessing, The teSt generatlon Of
The IF model contai | possibl les (login,

pas;.\to:;;jt;a::\:llal;z:;i; uz?cislslch: e;?iug‘i;ez?gonnary abStraCt teSt cases based

on an algorithm called
“Hit or Jump”

Formal specification

OBI(1) = OBJ(ord) = {objl, obj2, obj3, objd}
objl,obj3 = condl *cond2*cond3” condd *cond>3

s

condl = process: instance = {server})
cond? = state: source: login
cond3 = state: destination: login -
cond4 = action: input login(login, pass2) g change{options}
__ _il 1
i E exit accessibie ekections) i
: ; <
i i Iogout / ok
| Test case i choosevole(vole)
i]]] i Voting threalContext
i ?login{loginl, passl} laccessAuthorized{} o i
f Toptions{optionpopll, optionpop21, optionpop31} lok{} - ha
; Tchoosefvotesl} E fmnga"ma
Nogin{leginl, pass2} laccessDenied{messagel } i
Hlogin{loginl, pass3} laccessDenied{messagel } !
Nlogin{leginl, pass2} laccessDenied{messagel } i
Hlogin{loginl, passl } laccessAuthorized(} < i eatContex legout f ok logout / ok voleichoice1 I
.. ; chaice2) / ok
IP Adress Port valdate ok
Execute

AUTC

Test generation with TestGen-IF

5| SWT Applicati
(X pplication

Test Objective

Force Brute Version 1 -

Description

The tester tries to find the correct password in order to
connect as a Bob user,

Our chjective is to check the behavior of the systern when an
attacker (misuser)

tries to find the password by guessing.

The IF model contains several possible couples (login,
password) that will be tested until the end of the dictionnary

| »

m

Formal specification

OBJ{1) = OBMerd] = {objl, obj2, obj3, obj4}

objl,chj3 = condl ®cond2* cond3* cond4 * cond5 |
condl = process: instance = {server}

cond2 = state: source: login

cond3 = state: destination: login

condd = action: input login(loginl, pass2)

*

m|

Generate Test case

Test case

flogin{loginl, passl} laccessfuthorized{}

foptions{optionpopll, optionpop2l, optionpop31} lok{}
fchooselvotesl} /
flogin{loginl,pass2} laccessDenied{messagel }

m
.

192.168.1.1 anal|

fleginf{loginl, pass3} laccessDenied{messagel } / 7
Hlogin{loginl,pass2} laccessDenied{messagel } . / /
Hlogin{loginl,passl} laccessAuthorized{} =
L
IP Adress Port

kegin{legin, password) / access denied

hgh_"]

legin(legin.password) / acoess_authorized

Privacy options
Je |
o exit b
options(opl,op2.opd) / ok
exit Elections |=.._ pions F
—
[cond=noklchoose (votes
N
popup alart
[cond=pk]choose{voles)
change{options)
M
elections l
—1e| Testing
scripts I
logout / ok
choosevole(vote)
N J = Woling threatContaxt
Ill
/' change_vole
/ F ok
lagoul [ok] 1 Fok
IhreatCeontexl 9 gout valejchoice1,
choice) / ok
ITWL validate / ok I@auvuﬂluihn
threalContaxt

S Test Engineer
Test g\bstract Testlng
Generation ::tr;ty scrlpts
Init testlng P N
B o N
] ?\‘
s H

Monitoring tool (MMT)

| Application FSM
| r—————— > Model (IF)
L
Requirements I & \ TestGen-IF () {}
1
1

MMT

Requirements E

| Monitoring

Server

Evoting application

Properties

Expert R [Security

|
I “
i \
|
| H
| II’
I 4
| & Notifcation |*.(»<_) montimage.
N -1 11041 105

e

models 1 {
| Security
I -
|
|

J

e Detecting failures using MMT
o Events based detection
o Properties as FSMs or as LTL properties

* 2 main usages:

o During the testing phase to complement the testing tools
and provide a verdict

o During the operation phase to monitor security and
application context

» Relies on data collected at different levels
o Network (ex. CAM messages)
o Application internal events (notification module)*
o System status (CPU and memory usage)

Application internal events

notification

Network message

montimage
monitoring @ tool

MMT internal behavior

EFSM based
properties

Application events
System events Security
Analysis

Reporting

Network packets

Events

Events

System
events
Capture

_ EFSM based
Publish correlation

AMPQ Broker

-

-

|_L

Analys

~r
(1‘

ct |

nd fa

@

&
(P

I

OX

» Evoting test case

— Advanced authentication option

o Example of property: Only authenticated voters can cast

their votes

Cast vote = Failure

Cast vote = Success

Login

'\

Logout

MMT analysm dashboard -

& o @ |D localhost:4567/mmt-sec

Security Dashboard
Pl | f_-.lr 7
e A
7w A\

“ Threat Level ***

Detected failures for security property 1: Only logged voters can cast their

votes

Total Failure
Verdicts

Total Success
Verdicts

detected verdicts

15

0.5

MMT analysis dashboard — Attack
detection

& o @ D localhost:4567/mmt-sec <!

Security Dashboard

Detected attacks for attack scenario 1: Brute force attack

15

Total Failure
Verdicts

" Threat Level Total Success
Verdicts

1 -

0.5

detected verdicts

0

[
n 16:08:58.000

Model based test generation for security purposes
(TestGen-IF)

Correlation of data from different sources (Network,
application, system)

Detegtion of attacks and failures at runtime

..........

..........

reaction

Brings dynamicity to system by adapting to different
contexts

Pramila Mouttappa, Stephane Maag and Ana Cavalli, "IOSTS based Passive Testing approach for the Validation of
data-centric Protocols",12th International Conference on Quality Software (QSIC 2012), X’ian, China, 27th-29th
August 2012.

Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana Cavalli, Shanai Ardi and Willy Jimenez,
"An Advanced Approach for Modeling and Detecting Software Vulnerabilities", Journal Information and Software
Technology, vol 54, issue 9, September 2012.

Anderson Morais and Ana Cavalli, "A Distributed Intrusion Detection Scheme for Wireless Ad Hoc Networks", 27th
Annual ACM Symposium on Applied Computing (SAC'12), March 25-29, 2012, Riva del Garda (Trento), Italy

Faycal Bessayah, Ana Cavalli, A Formal Passive Testing Approach For Checking Real Time Constraints, 7th
International Conference on the Quality of Information and Communications Technology, September 29th 2010,
Porto, Portugal.

César Andrés, Stephane Maag, Ana Cavalli, Mercedes G. Merayo, Manuel Nunez, "Analysis of the OLSR Protocol by
using formal passive testing", APSEC 2009, December 2009, Penang, Malaysia.

Felipe Lalanne, Stephane Maag, Edgardo Montes de Oca, Ana Cavalli, Wissam Mallouli and Arnaud Gonguet , An
Automated Passive Testing Approach for the IMS PoC Service, 24th ACM/IEEE International Conference on
Automated Software Engineering, November 2009, Auckland, New Zealand.

Ana Rosa Cavalli, Azzedine Benameur, Wissam Mallouli, Keqin Li, A Passive Testing Approach for Security Checking
and its Practical Usage for Web Services Monitoring, invited paper, NOTERE 2009, 29-June 3-July, 2009, Montréal,
Canada.

Ana Cavalli, Stephane Maag and Edgardo Montes de Oca, A Passive Conformance Testing Approach for a Manet
Routing Protocol, The 24th Annual ACM Symposium on Applied Computing SAC'09, March 9-12 2009, Hawaii, USA.

9. Ana R. Cavalli, Edgardo Montes De Oca, Wissam Mallouli, Mounir Lallali, Two Complementary
Tools for the Formal Testing of Distributed Systems with Time Constraints, The 12-th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2008),
October 27-29, Vancouver, Canada.

10. Wissam Mallouli, Faycal Bessayah, Ana R. Cavalli, Azzedine Benameur, Security Rules
Specification and Analysis Based on Passive Testing, The IEEE Global Communications Conference
(GLOBECOM 2008), November 30 - December 04, New Orleans, USA.

11. J.-M. Orset, B. Alcalde and A. Cavalli, An EFSM-Based Intrusion Detection System for Ad Hoc
Networks, ATVA 05, Taipei, Taiwan, October 2005.

12. E. Bayse, A. Cavalli, M. Nanez, and F. Zaidi. A passive testing approach based on invariants:
application to the wap. In Computer Networks, volume 48, pages 247-266. Elsevier Science, 2005.
13. César Andrés, 99-113, Maria Emilia Cambronero, Manuel Nunez Maria-Emilia

Cambronero, Manuel Nufiez: Formal Passive Testing of Service-Oriented Systems. IEEE SCC
2010IEEE SCC 2010: 610-613.

14. César Andrés, Mercedes G. Merayo, Manuel Nunez: Multi-objective Genetic Algorithms:
Construction and Recombination of Passive Testing Properties. SEKE 2010: 405-410.

15. César Andrés, Mercedes G. Merayo, Manuel Nufiez: Formal passive testing of timed systems:
theory and tools. Softw. Test., Verif. Reliab. 22 (6): 365-405 (2012)

16. Robert M. Hierons, Mercedes G. Merayo, Manuel Nunez: Passive Testing with Asynchronous
Communications. FMOODS/FORTE 2013:

17 Khalifa Toumi, Fabien Autrel, Ana R. Cavalli, Sammy Haddad: ISER: A Platform for Security
Interoperability of Multi-source Systems. : 230-238 , 2014

18 Mohamed H.E. Aouadi, Khalifa Toumi and Ana Cavalli, "Testing Security Policies for
Distributed Systems: Vehicular Networks as a Case Study", International Journal of
Computer Science Issues (IJCSI) Volume 11, Issue 5, September 2014

19 Toumi, K., Mallouli W., Montes de Oca E., Cavalli, A., Andrés, C., " How to Evaluate Trust
Using MMT", NSS 2014, October 15-17, 2014, Xi'an, China.

20 Mohamed H. E. Aouadi, Khalifa Toumi and Ana R. Cavalli, “On Modeling and Testing
Security Properties of Vehicular Networks”, IEEE SECTEST workshop, March 31 2014,
Cleveland, USA

http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html
http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html
http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html

