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Show the evolution of active testing 
to monitoring (passive testing) 
techniques 

Explain the differences and 
complementarity of these 
techniques  

Application to an industrial case 
study 
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Our research model is based in: 
• Basic and applied research 

• Evaluation of results in real environments 

• Strong collaboration with industrial partners 
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Basic Research 
Application 

Domains 
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 Testing: The process of executing software with 
the intent of finding and correcting faults 

 Conformance testing: The process of checking if 
the implementation under test conforms the 
specification 

• Two techniques: active and passive testing (monitoring) 

• This presentation will focus on both of them, to show 
that there are many common objectives and  challenges  
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• Usually called Model Based Testing (MBT) 

• It is assumed that the tester controls the implementation. Control 
means:  after sending  an input and after receiving an output, the 
tester knows what is  the next input to be send 

• The tester can guide the implementation towards specific states 

• Automatic test generation methods can be defined 

• Usually a test case is a set of input sequences  

 

 

IUT Active Tester Verdict: 
PASS, 
FAIL, 
INCONC. 
 Formal 

Specification 
Test 

Suites 
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• Passive testing consists in analyzing the traces  recorded from the 
IUT and trying to find a fault by comparing these traces with either 
the complete specification or by verifying  some specifics 
requirements (or properties) during normal runtime 

•  No interferences with the IUT 

•  It is also referred to as monitoring 

 

 

IUT 

Passive Tester Verdict: 
PASS, 
FAIL, 
INCONC. 
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1 3 2 
1€ / another 1€ 1€ / OK 

Choice / Soda, Juice 

2€ / OK 

Specification 

1 3 2 
1€ / another 1€ 1€ / OK 

Choice / Soda, Juice 

2€ / yet another 1€ 

I1 output fault 
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1 2 
1€ / another 1€ 

Choice / Soda, Juice 

2€ / OK 

I2 

transfer fault 

1€ / OK 

1 

1€ / another 1€ 

1€ / OK 
Choice / 

Soda, Juice 

2€ / OK 

I3 
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 How to bring the finite state machine 
implementation into any given state at any given 
time during testing ? 

Non trivial problem because of limited 
controllability of the finite state machine 
implementation 

 It may not be possible to put the finite state 
machine into the head state of the transition 
being tested without realizing several transitions 

11 



 

a/b 

Specification 

a/b 

Imp1 

a/b a/b 

Imp2 

ε/b a/b 

Non controllable Controllable 

 a/ε ε/b 

Non controllable 

a/b a/c 

Controllable under fairness  
assumption 

Imp3 Imp4 Imp5 
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 How to verify that the finite state machine 
implementation is in a correct state after 
input/output exchange?  

 

 State identification problem. Difficult because of limited 
observability of the finite state machine implementation, it 
may not be possible to directly verify that the finite state 
machine is in the desired tail state after the transition has 
been fired 
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To solve this problem different 
methods have been proposed: 

DS (Distinguishing Sequence) 

  UIO (Unique Input/Output Sequence) 

  W (Distinction Set) 

14 



 

S1 

S3 S2 a/x 

c/z 

b/y 

a/y 
b/z 

c/y 

a/y 

b/x 

c/x Define an input sequence for each state 
such that the output sequence  
generated is unique to that state. 
 Detects output and transfer faults. 

 

     State    UIO sequences  

      S1          c/x 
      S2          c/y  
      S3          b/y 

                  

                (1) 

                    

(2) 

              

              Test of (1): a/y a/x b/y 
                Test of (2): a/y c/z b/y 
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S1 

S3 S2 

c/x 

b/y 

b/z 

c/y 

a/y 

c/x 

Test of (1): a/y a/x b/y 
Test of (2): a/y c/z b/y 
 
Application du test of (1) to  

the implementation: a/y a/x  
b/z (transfer error) 
        Application of test (2) to  
 the implementation:  
 a/y c/x (output error) 

b/x 

a/x 

Faulty Implementation 

a/y 
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Non applicable when no direct access to 
the implementation under test 

Semi- controllable interfaces 
(component testing) 

 Interferences on the behaviour of the 
implementation 
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 Test in context, embedded testing: 

 Tests focused on some 
components of the system, to 
avoid redundant tests 

 Interfaces semi-controllables  

 In some cases it is not possible to 
apply active testing 

C A 

 a b’c c’                 b  a’ 

ib 

 ia 

           Environment 

Internal 

Message 

Context Module Embedded Module 
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 Conformance testing is essentially focused on 
verifying the conformity of a given implementation 
to its specification 

 It is based on the ability of a tester that stimulates the 
implementation under test and checks the correction of the 
answers provided by the implementation 

 Closely related to the controllability of the IUT 

 In some cases this activity becomes difficult, in particular: 

  if the tester has not a direct interface with the implementation 

  or when the implementation is built from components that have 
to run in their environment and cannot be shutdown or 
interrupted (for long time) in order to test them 
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 Controllability 

 No controllability issue because no interaction with the 
implementation under test 

 Observability  

 It is assumed that to perform passive testing it is necessary to 
observe the messages exchanges between modules.  

 Passive testing is a Grey Box testing technique 

  Fault detection using passive testing 

 It is possible to detect output faults 

 It is possible to detect transfer faults under some hypothesis: 
to initialise the IUT in order to be sure that the 
implementation is in the initial state and then perform passive 
testing 
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 In this approach a set of properties are extracted from the 
specification or proposed by the protocol experts, and then 
the trace resulting from the implementation is analyzed to 
determine whether it validates this set of properties.  

 

 These extracted set of properties are called invariants 
because they have to hold true at every moment. 
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Definition: an invariant is a property that is 
always true.  

 Two test steps: 

Extraction of invariants from the specification or 
proposed by protocol experts 

Application of invariants on execution event 
traces from implementation 

 Solution: I/O invariants 
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An invariant is composed of two parts : 

The test (an input or an output)  

The preamble (I/O sequence) 

 3 kind of invariants : 

Output invariant (simple invariant) 

 Input invariant    (obligation invariant) 

  Succession invariant (loop invariant) 
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Definition : invariant in which the test is an 
output 

Meaning : « immediatly after the sequence 
préambule there is always the expected 
output » 

  Example :  
(i1 / o1) (i2 / o2) 

(preambule in blue, expected output in red) 

24 



 

Definition : invariant in which the test is an 
input 

Meaning : « immediatly before the sequence 
preamble there is always the input test » 

  Example :  

(i1 / o1) (i2 / o2) 

(preamble in blue, test in red) 
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Definition : I/O invariant for complex 
properties (loops …) 

 Example : 

 the 3 invariants below build the property : 
« only the third i2 is followed by o3 »  

(i1 / o1) (i2 / o2) 

(i1 / o1) (i2 / o2) (i2 / o2) 

(i1 / o1) (i2 / o2) (i2 / o2) (i2 / o3) 
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  A trace as i1/O1,…, in-1/On-1, in /O is a simple invariant if each 

time that the trace i1/O1,…, in-1/On-1 is observed, if we obtain 
the input in then we necessarily get an output belonging 
to O, where O is included in the set of expected outputs. 

 i/o, *, i’/O means that if we detect the transition i/o 
then the first occurrence of the symbol i’ is followed by 
an output belonging to the set O. 

 * replaces any sequence of symbols not containing the 
input symbol i’ and ? replaces any input or output. 
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3 2 a/x 

c/z 

b/y 

a/y 
b/z 

c/y 

b/x 

a/x c/x 

Traces 
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c/y a/x b/z b/x a/y 
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a/?, c/z, b/{y} 

b/z, a/{x} 

a/x, *, b/{y, z} 

a/y, ?/{z} 

a/x, *, ?/{y} 

False 

True 

False 

a/{x} 

True 

False 
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 Possibility to focus on a 
specific part of the 
specification 

 Full test generation 
automation 

 Needs a model 

 May modify (crash) the IUT 
behavior 

 

IUT Active Tester Verdict: 
PASS,FAIL, 
INCONC. 
 

Formal 
Specification 

Test 
Suites 

IUT 

Passive Tester Verdict: 
PASS,FAIL, 
INCONC. 
 

System Specification 
System User 

PO 
Trace 

Collection 

       No interferences with the IUT 

       No  models needed 

       Full monitoring automation 

        Grey box testing 



 Monitoring of routing protocols for ad hoc (OLSR 
protocol) and mesh networks based on a 
distributed approach (Batman protocol) (TSP) 

 Monitoring for secure interoperability – 
Application to a multi-source information system 
(TSP) 

 Monitoring with time constraints (C. Andrés, M. 
Nuñez and M. Merayo)  

 Other works by (T. Jeron and H. Marchand, A. 
Ulrich and A. Petrenko) 
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 Approach proposed by researchers of verification 
(model checking) community 

 Passive testing developed by the testing 
community 

 EAGLE and RuleR tools proposed by Barringer 
and al. in 2004 and 2010 respectively, based on 
temporal logics and rewriting rules  for properties 
description 

 Others tools: Tracematches, [Avgustinov et al. 
2007], J-LO [Bodden 2005]and LSC [Maoz and 
Harel 2006] 
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Interoperable Trust Assurance Infrastructure 

 

 

 

 

 
 Project co-funded by the European Union under the Information and 

Communication Technologies theme of the 7th Framework Programme for 
R&D ICT-2011.1.4 Trustworthy ICT contract n. 317731 

 November 2012 – April 2015 (30 months) 

 www.inter-trust.eu 
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 Develop a dynamic and scalable framework   
 to support trustworthy services in heterogeneous 

networks and devices 
 based on the enforcement of interoperable and 

changing security policies 

 Addressing the needs of developers, integrators 
and operators 
 to develop and operate systems in a secure trusted 

manner  
 dictated by negotiated security policies through 

dynamic security SLAs 

 Separate the security concerns from the 
functional requirements => AOP 

 



34 

Validation 
Validate the architecture, techniques and tools developed using two 
completely different case studies with complex, high-demanding 
critical services 

V2X communications 
E-Voting 
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 The INTER-TRUST framework allows the secure interoperation 
enforcement and supervision between communicating and 
heterogeneous systems. It allows: 

 

 The negotiation and adaptability of security policies according to the 
available resources and changes in the environment 

 

 The dynamic deployment of negotiated security policies using a selected 
AOP framework 

 

 The automatic verification and validation of security policies by means of 
testing & monitoring techniques 



 

36 36 
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Inter-Trust Framework  
for secure interoperation 

 

40 

I-T Framework architecture 
40 
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DEVICE 
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Inter-Trust Framework  
for secure interoperation 
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I-T Framework architecture 
41 
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DEVICE 

Test init 
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Motivation 

 

 Why testing ? (testing phase) 

 Vulnerabilities can be introduced by AOP used in Inter-trust 

 Functional testing 

 Check the respect of weaved security policies (aspects) 

 Check the robustness of the target application 

 Detect vulnerabilities 

 Simulate attacks 

 

 Why monitoring ? (testing & operation phases) 

 Same as above 

 + detecting context changes (context awareness) at runtime 
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Model based testing: TestGen-IF 

 

 

 

 

 

 

 

 Generation of tests from IF model and test purposes 

 Target: functional, security properties, attacks* 

 Execution relying on Selenium (Web interface) 

 Detecting failures using MMT 
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First step, the user is 
asked to introduce his 
login and password : 
-if the user does not use 
a correct login and 
password, an error 
message will be 
displayed 
- otherwise the user will 
be connected. 

In this state the user 
is asked to choose 
his privacy options 
(Authentication, 
Encryption, 
signature) 

In this state the user will 
choose a list  of elections 
in which he will vote 

This state means that 
there are a warning 
regarding the security 
policy. The user must 
choose other options. 

The vote is validated. 
The user cannot modify 
his vote anymore. 
However he can choose 
another election or 
logout. 

This state presents the 
available elections for 
the user 

In this step the user has 
to verify his vote: He can 
confirm or change his 
vote. 

In this step the vote 
choices are displayed. 
The user has to fill the 
vote form. The step is 
the effective vote 

The E-voting 
application has been 
specified as an 
extended finite state 
machine (IF 
language) 

IF FSM Model 



Test Objective specification 

This part of the TestGen-IF tool aims 
to choose the test objective. Each test 
objective is presented with its 
description and formal specification. 



Test case Generation 
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The test generation of 
abstract test cases based 
on an algorithm called 
“Hit or Jump” 



Automatic test execution 
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Monitoring tool (MMT) 

 

 

 

 

 

 

 

 

 Detecting failures using MMT 

 Events based detection 

 Properties as FSMs or as LTL properties 
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Monitoring 

 2 main usages: 

 During the testing phase to complement the testing tools 
and provide a verdict 

 During the operation phase to monitor security and 
application context 

 

 Relies on data collected at different levels 

 Network (ex. CAM messages) 

 Application internal events (notification module)* 

 System status (CPU and memory usage) 
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Application internal events 
notification 
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Running application 
 

MMT Server 
Can be locally or remotely installed 

 

Network message 
MMT Client 

Connector 
Java 

Call 
Notification  

Aspect 

Policy Engine 

(PDP) 

Security violation context 



MMT internal behavior 
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MMT Channel 

Filter 
Security 
Analysis 

Context 
change 

AMPQ Broker 

EFSM based 
properties 

Reporting 

System  
events 

Capture 

Application events 

Network packets 

Events 

Events 

EFSM based 
correlation Publish 

Notification module 

System events 



Analysis and failure detection 

 Evoting test case – Advanced authentication option 

 Example of property: Only authenticated voters can cast 
their votes 
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Init 
Logged

_In 

Login 

Cast vote   Failure Cast vote   Success 

Logout 



MMT analysis dashboard – 
Security property 
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MMT analysis dashboard – Attack 
detection 
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Summary 

 Model based test generation for security purposes 
(TestGen-IF) 

 

 Correlation of data from different sources (Network, 
application, system) 

 

 Detection of attacks and failures at runtime  

            reaction 

 

 Brings dynamicity to system by adapting to different 
contexts 
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