
ANA CAVALLI - KHALIFA TOUMI -
WISSAM MALLOULI

INSTITUT MINES -
TELECOM/TELECOM SUDPARIS -

MONTIMAGE

TAROT 2015

CADIZ - JUNE 29 -JULY 2,2015

1

Show the evolution of active testing
to monitoring (passive testing)
techniques

Explain the differences and
complementarity of these
techniques

Application to an industrial case
study

2

Our research model is based in:
• Basic and applied research

• Evaluation of results in real environments

• Strong collaboration with industrial partners

3

Basic Research
Application

Domains

4

 Testing: The process of executing software with
the intent of finding and correcting faults

 Conformance testing: The process of checking if
the implementation under test conforms the
specification

• Two techniques: active and passive testing (monitoring)

• This presentation will focus on both of them, to show
that there are many common objectives and challenges

5

• Usually called Model Based Testing (MBT)

• It is assumed that the tester controls the implementation. Control
means: after sending an input and after receiving an output, the
tester knows what is the next input to be send

• The tester can guide the implementation towards specific states

• Automatic test generation methods can be defined

• Usually a test case is a set of input sequences

IUT Active Tester Verdict:
PASS,
FAIL,
INCONC.
 Formal

Specification
Test

Suites

6

• Passive testing consists in analyzing the traces recorded from the
IUT and trying to find a fault by comparing these traces with either
the complete specification or by verifying some specifics
requirements (or properties) during normal runtime

• No interferences with the IUT

• It is also referred to as monitoring

IUT

Passive Tester Verdict:
PASS,
FAIL,
INCONC.

System
Specification

System User

PO

Trace

Collection

7

8

1 3 2
1€ / another 1€ 1€ / OK

Choice / Soda, Juice

2€ / OK

Specification

1 3 2
1€ / another 1€ 1€ / OK

Choice / Soda, Juice

2€ / yet another 1€

I1 output fault

9

1 2
1€ / another 1€

Choice / Soda, Juice

2€ / OK

I2

transfer fault

1€ / OK

1

1€ / another 1€

1€ / OK
Choice /

Soda, Juice

2€ / OK

I3

10

 How to bring the finite state machine
implementation into any given state at any given
time during testing ?

Non trivial problem because of limited
controllability of the finite state machine
implementation

 It may not be possible to put the finite state
machine into the head state of the transition
being tested without realizing several transitions

11

a/b

Specification

a/b

Imp1

a/b a/b

Imp2

ε/b a/b

Non controllable Controllable

 a/ε ε/b

Non controllable

a/b a/c

Controllable under fairness
assumption

Imp3 Imp4 Imp5

12

 How to verify that the finite state machine
implementation is in a correct state after
input/output exchange?

 State identification problem. Difficult because of limited
observability of the finite state machine implementation, it
may not be possible to directly verify that the finite state
machine is in the desired tail state after the transition has
been fired

13

To solve this problem different
methods have been proposed:

DS (Distinguishing Sequence)

 UIO (Unique Input/Output Sequence)

 W (Distinction Set)

14

S1

S3 S2 a/x

c/z

b/y

a/y
b/z

c/y

a/y

b/x

c/x Define an input sequence for each state
such that the output sequence
generated is unique to that state.
 Detects output and transfer faults.

 State UIO sequences

 S1 c/x
 S2 c/y
 S3 b/y

 (1)

(2)

 Test of (1): a/y a/x b/y
 Test of (2): a/y c/z b/y

15

S1

S3 S2

c/x

b/y

b/z

c/y

a/y

c/x

Test of (1): a/y a/x b/y
Test of (2): a/y c/z b/y

Application du test of (1) to

the implementation: a/y a/x
b/z (transfer error)
 Application of test (2) to
 the implementation:
 a/y c/x (output error)

b/x

a/x

Faulty Implementation

a/y

16

Non applicable when no direct access to
the implementation under test

Semi- controllable interfaces
(component testing)

 Interferences on the behaviour of the
implementation

17

 Test in context, embedded testing:

 Tests focused on some
components of the system, to
avoid redundant tests

 Interfaces semi-controllables

 In some cases it is not possible to
apply active testing

C A

 a b’c c’ b a’

ib

 ia

 Environment

Internal

Message

Context Module Embedded Module

18

 Conformance testing is essentially focused on
verifying the conformity of a given implementation
to its specification

 It is based on the ability of a tester that stimulates the
implementation under test and checks the correction of the
answers provided by the implementation

 Closely related to the controllability of the IUT

 In some cases this activity becomes difficult, in particular:

 if the tester has not a direct interface with the implementation

 or when the implementation is built from components that have
to run in their environment and cannot be shutdown or
interrupted (for long time) in order to test them

19

 Controllability

 No controllability issue because no interaction with the
implementation under test

 Observability

 It is assumed that to perform passive testing it is necessary to
observe the messages exchanges between modules.

 Passive testing is a Grey Box testing technique

 Fault detection using passive testing

 It is possible to detect output faults

 It is possible to detect transfer faults under some hypothesis:
to initialise the IUT in order to be sure that the
implementation is in the initial state and then perform passive
testing

20

 In this approach a set of properties are extracted from the
specification or proposed by the protocol experts, and then
the trace resulting from the implementation is analyzed to
determine whether it validates this set of properties.

 These extracted set of properties are called invariants
because they have to hold true at every moment.

21

Definition: an invariant is a property that is
always true.

 Two test steps:

Extraction of invariants from the specification or
proposed by protocol experts

Application of invariants on execution event
traces from implementation

 Solution: I/O invariants

22

An invariant is composed of two parts :

The test (an input or an output)

The preamble (I/O sequence)

 3 kind of invariants :

Output invariant (simple invariant)

 Input invariant (obligation invariant)

 Succession invariant (loop invariant)

23

Definition : invariant in which the test is an
output

Meaning : « immediatly after the sequence
préambule there is always the expected
output »

 Example :
(i1 / o1) (i2 / o2)

(preambule in blue, expected output in red)

24

Definition : invariant in which the test is an
input

Meaning : « immediatly before the sequence
preamble there is always the input test »

 Example :

(i1 / o1) (i2 / o2)

(preamble in blue, test in red)

25

Definition : I/O invariant for complex
properties (loops …)

 Example :

 the 3 invariants below build the property :
« only the third i2 is followed by o3 »

(i1 / o1) (i2 / o2)

(i1 / o1) (i2 / o2) (i2 / o2)

(i1 / o1) (i2 / o2) (i2 / o2) (i2 / o3)

26

 A trace as i1/O1,…, in-1/On-1, in /O is a simple invariant if each

time that the trace i1/O1,…, in-1/On-1 is observed, if we obtain
the input in then we necessarily get an output belonging
to O, where O is included in the set of expected outputs.

 i/o, *, i’/O means that if we detect the transition i/o
then the first occurrence of the symbol i’ is followed by
an output belonging to the set O.

 * replaces any sequence of symbols not containing the
input symbol i’ and ? replaces any input or output.

27

28

a/y

1

3 2 a/x

c/z

b/y

a/y
b/z

c/y

b/x

a/x c/x

Traces
a/y c/z b/y a/y a/x c/z b/y
c/x a/y a/x c/z b/y
c/y a/x b/z b/x a/y

Verdict Invariants

a/?, c/z, b/{y}

b/z, a/{x}

a/x, *, b/{y, z}

a/y, ?/{z}

a/x, *, ?/{y}

False

True

False

a/{x}

True

False

True

29

 Possibility to focus on a
specific part of the
specification

 Full test generation
automation

 Needs a model

 May modify (crash) the IUT
behavior

IUT Active Tester Verdict:
PASS,FAIL,
INCONC.

Formal
Specification

Test
Suites

IUT

Passive Tester Verdict:
PASS,FAIL,
INCONC.

System Specification
System User

PO
Trace

Collection

  No interferences with the IUT

  No models needed

  Full monitoring automation

  Grey box testing

 Monitoring of routing protocols for ad hoc (OLSR
protocol) and mesh networks based on a
distributed approach (Batman protocol) (TSP)

 Monitoring for secure interoperability –
Application to a multi-source information system
(TSP)

 Monitoring with time constraints (C. Andrés, M.
Nuñez and M. Merayo)

 Other works by (T. Jeron and H. Marchand, A.
Ulrich and A. Petrenko)

30

 Approach proposed by researchers of verification
(model checking) community

 Passive testing developed by the testing
community

 EAGLE and RuleR tools proposed by Barringer
and al. in 2004 and 2010 respectively, based on
temporal logics and rewriting rules for properties
description

 Others tools: Tracematches, [Avgustinov et al.
2007], J-LO [Bodden 2005]and LSC [Maoz and
Harel 2006]

31

32

Interoperable Trust Assurance Infrastructure

 Project co-funded by the European Union under the Information and

Communication Technologies theme of the 7th Framework Programme for
R&D ICT-2011.1.4 Trustworthy ICT contract n. 317731

 November 2012 – April 2015 (30 months)

 www.inter-trust.eu

33

 Develop a dynamic and scalable framework
 to support trustworthy services in heterogeneous

networks and devices
 based on the enforcement of interoperable and

changing security policies

 Addressing the needs of developers, integrators
and operators
 to develop and operate systems in a secure trusted

manner
 dictated by negotiated security policies through

dynamic security SLAs

 Separate the security concerns from the
functional requirements => AOP

34

Validation
Validate the architecture, techniques and tools developed using two
completely different case studies with complex, high-demanding
critical services

V2X communications
E-Voting

35

 The INTER-TRUST framework allows the secure interoperation
enforcement and supervision between communicating and
heterogeneous systems. It allows:

 The negotiation and adaptability of security policies according to the
available resources and changes in the environment

 The dynamic deployment of negotiated security policies using a selected
AOP framework

 The automatic verification and validation of security policies by means of
testing & monitoring techniques

36 36

Inter-Trust Framework
for secure interoperation

Dynamic
specification of
security policies

(SLAs)

Application (E-voting, ITS, etc.)

Dynamic
deployment of

security policies

Application
+ Context

Monitoring

Testing for
Vulnerabilities

detection

DEVICE

37 37

Inter-Trust Framework
for secure interoperation

Application (E-voting, ITS, etc.)

Dynamic
deployment of

security policies

Application
+ Context

Monitoring

Testing for
Vulnerabilities

detection

DEVICE

Negotiation

Module

Security editor(s)

Security policy

Policy

Engine

38 38

Inter-Trust Framework
for secure interoperation

Application (E-voting, ITS, etc.)

Application
+ Context

Monitoring

Testing for
Vulnerabilities

detection

DEVICE

Negotiation

Module

Security editor(s)

Security policy

Policy

Engine Policy

Interpreter

Aspect

Generation

Aspect

Weaver

39 39

Inter-Trust Framework
for secure interoperation

Application (E-voting, ITS, etc.)

Testing for
Vulnerabilities

detection

DEVICE

Negotiation

Module

Security editor(s)

Security policy

Policy

Engine Policy

Interpreter

Aspect

Generation

Aspect

Weaver

Context

Awareness

Notification

Module

Monitoring

tool

Inter-Trust Framework
for secure interoperation

40

I-T Framework architecture
40

Application (E-voting, ITS, etc.)

DEVICE

Negotiation

Module

Security editor(s)

Security policy

Policy

Engine Policy

Interpreter

Aspect

Generation

Test init

Module

Fuzz

test. tool

Active

test. tool

Aspect

Weaver

Notification

Module

Context

Awareness

Monitoring

tool

Inter-Trust Framework
for secure interoperation

41

I-T Framework architecture
41

E-voting

DEVICE

Test init

Module

Fuzz

test. tool

Active

test. tool

Notification

Module

Context

Awareness

Monitoring

tool

Motivation

 Why testing ? (testing phase)

 Vulnerabilities can be introduced by AOP used in Inter-trust

 Functional testing

 Check the respect of weaved security policies (aspects)

 Check the robustness of the target application

 Detect vulnerabilities

 Simulate attacks

 Why monitoring ? (testing & operation phases)

 Same as above

 + detecting context changes (context awareness) at runtime

42

Model based testing: TestGen-IF

 Generation of tests from IF model and test purposes

 Target: functional, security properties, attacks*

 Execution relying on Selenium (Web interface)

 Detecting failures using MMT

43

First step, the user is
asked to introduce his
login and password :
-if the user does not use
a correct login and
password, an error
message will be
displayed
- otherwise the user will
be connected.

In this state the user
is asked to choose
his privacy options
(Authentication,
Encryption,
signature)

In this state the user will
choose a list of elections
in which he will vote

This state means that
there are a warning
regarding the security
policy. The user must
choose other options.

The vote is validated.
The user cannot modify
his vote anymore.
However he can choose
another election or
logout.

This state presents the
available elections for
the user

In this step the user has
to verify his vote: He can
confirm or change his
vote.

In this step the vote
choices are displayed.
The user has to fill the
vote form. The step is
the effective vote

The E-voting
application has been
specified as an
extended finite state
machine (IF
language)

IF FSM Model

Test Objective specification

This part of the TestGen-IF tool aims
to choose the test objective. Each test
objective is presented with its
description and formal specification.

Test case Generation

46

The test generation of
abstract test cases based
on an algorithm called
“Hit or Jump”

Automatic test execution
47

Monitoring tool (MMT)

 Detecting failures using MMT

 Events based detection

 Properties as FSMs or as LTL properties

48

Monitoring

 2 main usages:

 During the testing phase to complement the testing tools
and provide a verdict

 During the operation phase to monitor security and
application context

 Relies on data collected at different levels

 Network (ex. CAM messages)

 Application internal events (notification module)*

 System status (CPU and memory usage)

49

Application internal events
notification

50

Running application

MMT Server
Can be locally or remotely installed

Network message
MMT Client

Connector
Java

Call
Notification

Aspect

Policy Engine

(PDP)

Security violation context

MMT internal behavior
52

MMT Channel

Filter
Security
Analysis

Context
change

AMPQ Broker

EFSM based
properties

Reporting

System
events

Capture

Application events

Network packets

Events

Events

EFSM based
correlation Publish

Notification module

System events

Analysis and failure detection

 Evoting test case – Advanced authentication option

 Example of property: Only authenticated voters can cast
their votes

53

Init
Logged

_In

Login

Cast vote  Failure Cast vote  Success

Logout

MMT analysis dashboard –
Security property

54

MMT analysis dashboard – Attack
detection

55

Summary

 Model based test generation for security purposes
(TestGen-IF)

 Correlation of data from different sources (Network,
application, system)

 Detection of attacks and failures at runtime

 reaction

 Brings dynamicity to system by adapting to different
contexts

56

1. Pramila Mouttappa, Stephane Maag and Ana Cavalli, "IOSTS based Passive Testing approach for the Validation of
data-centric Protocols",12th International Conference on Quality Software (QSIC 2012), X’ian, China, 27th-29th
August 2012.

2. Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana Cavalli, Shanai Ardi and Willy Jimenez,
"An Advanced Approach for Modeling and Detecting Software Vulnerabilities", Journal Information and Software
Technology, vol 54, issue 9, September 2012.

3. Anderson Morais and Ana Cavalli, "A Distributed Intrusion Detection Scheme for Wireless Ad Hoc Networks", 27th
Annual ACM Symposium on Applied Computing (SAC'12), March 25-29, 2012, Riva del Garda (Trento), Italy

4. Fayçal Bessayah, Ana Cavalli, A Formal Passive Testing Approach For Checking Real Time Constraints, 7th
International Conference on the Quality of Information and Communications Technology, September 29th 2010,
Porto, Portugal.

5. César Andrés, Stephane Maag, Ana Cavalli, Mercedes G. Merayo, Manuel Nunez, "Analysis of the OLSR Protocol by
using formal passive testing", APSEC 2009, December 2009, Penang, Malaysia.

6. Felipe Lalanne, Stephane Maag, Edgardo Montes de Oca, Ana Cavalli, Wissam Mallouli and Arnaud Gonguet , An
Automated Passive Testing Approach for the IMS PoC Service, 24th ACM/IEEE International Conference on
Automated Software Engineering, November 2009, Auckland, New Zealand.

7. Ana Rosa Cavalli, Azzedine Benameur, Wissam Mallouli, Keqin Li, A Passive Testing Approach for Security Checking
and its Practical Usage for Web Services Monitoring, invited paper, NOTERE 2009, 29-June 3-July, 2009, Montréal,
Canada.

8. Ana Cavalli, Stephane Maag and Edgardo Montes de Oca, A Passive Conformance Testing Approach for a Manet
Routing Protocol, The 24th Annual ACM Symposium on Applied Computing SAC'09, March 9-12 2009, Hawaii, USA.

57

 9. Ana R. Cavalli, Edgardo Montes De Oca, Wissam Mallouli, Mounir Lallali, Two Complementary
Tools for the Formal Testing of Distributed Systems with Time Constraints, The 12-th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2008),
October 27-29, Vancouver, Canada.

 10. Wissam Mallouli, Fayçal Bessayah, Ana R. Cavalli, Azzedine Benameur, Security Rules
Specification and Analysis Based on Passive Testing, The IEEE Global Communications Conference
(GLOBECOM 2008), November 30 - December 04, New Orleans, USA.

 11. J.-M. Orset, B. Alcalde and A. Cavalli, An EFSM-Based Intrusion Detection System for Ad Hoc
Networks, ATVA 05, Taipei, Taiwan, October 2005.

 12. E. Bayse, A. Cavalli, M. Núñez, and F. Zaïdi. A passive testing approach based on invariants:
application to the wap. In Computer Networks, volume 48, pages 247-266. Elsevier Science, 2005.

 13. César Andrés, 99-113, Maria Emilia Cambronero, Manuel Nuñez María-Emilia
Cambronero, Manuel Núñez: Formal Passive Testing of Service-Oriented Systems. IEEE SCC
2010IEEE SCC 2010: 610-613.

 14. César Andrés, Mercedes G. Merayo, Manuel Núñez: Multi-objective Genetic Algorithms:
Construction and Recombination of Passive Testing Properties. SEKE 2010: 405-410.

 15. César Andrés, Mercedes G. Merayo, Manuel Núñez: Formal passive testing of timed systems:
theory and tools. Softw. Test., Verif. Reliab. 22 (6): 365-405 (2012)

 16. Robert M. Hierons, Mercedes G. Merayo, Manuel Núñez: Passive Testing with Asynchronous
Communications. FMOODS/FORTE 2013:

58

 17 Khalifa Toumi, Fabien Autrel, Ana R. Cavalli, Sammy Haddad: ISER: A Platform for Security
Interoperability of Multi-source Systems. CRiSIS 2014: 230-238 , 2014

 18 Mohamed H.E. Aouadi, Khalifa Toumi and Ana Cavalli, "Testing Security Policies for
Distributed Systems: Vehicular Networks as a Case Study", International Journal of
Computer Science Issues (IJCSI) Volume 11, Issue 5, September 2014

 19 Toumi, K., Mallouli W., Montes de Oca E., Cavalli, A., Andrés, C., " How to Evaluate Trust
Using MMT", NSS 2014, October 15-17, 2014, Xi'an, China.

 20 Mohamed H. E. Aouadi, Khalifa Toumi and Ana R. Cavalli, “On Modeling and Testing
Security Properties of Vehicular Networks”, IEEE SECTEST workshop, March 31 2014,
Cleveland, USA

59

http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html
http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html
http://dblp.uni-trier.de/db/conf/crisis/crisis2014.html

