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An optimization problem is a pair: P = (S,f) where: 

S is a set of solutions (solution or search space) 

f: S → R is an objective function to minimize or maximize 

 

If our goal is to minimize the function we search for: 
Global maximum 

Local maximum 

Global minimum 

Local minimum 

s’ ∈ S | f(s’) ≤ f(s), ∀s ∈ S 

Optimization Problem 
Search   Software Testing   SBSE 
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In a MO problem there are several objectives (functions) we want to optimize 

Multi-Objective Optimization Problem 
Search   Software Testing   SBSE 
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Optimization Techniques 

EXACT APPROXIMATED 

AD HOC HEURISTICS METAHEURISTICS 

 Gradient 
 Lagrange multipliers 

Based on Calculus 

Dynamic Programming 
Branch and Bound 

Enumerative 

 SA 
 VNS 
 TS 

Trajectory 

 EA 
 ACO 
 PSO 

Population 

Optimization Techniques 
Search   Software Testing   SBSE 
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 Pseudocode of a simple EA 
 
 
 
 
 
 

 Three main steps: selection, reproduction, replacement 
 Variation operators à Make the population to evolve 

 Recombination: exchange of features 
 Mutation: generation of new features 

P = generateInitialPopulation (); 
evaluate (P); 
while not stoppingCondition () do 

 P´ = selectParents (P); 
 P´ = applyVariationOpterators (P´); 
 evaluate(P´); 
 P = selectNewPopulation (P,P´); 

end while 
return the best solution found 

Evolutionary Algorithm 
Search   Software Testing   SBSE 
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 Genetic Algorithms 

•   Individuals 

•   Recombination 

§   One point 

§   Two points 

§   Uniform 

•   Mutation → bit flips 

0 1 1 1 0 0 0 1 1 0 

Binary Chromosome 

0 1 1 1 0 0 0 1 1 0 

1 1 0 0 0 1 1 0 0 1 

0 0 0 1 1 0 0 1 1 1 

0 1 1 0 0 1 1 1 0 0 

1 0 0 1 0 1 1 0 1 0 

1 0 1 0 1 0 0 1 0 1 

0 1 1 1 0 1 0 0 1 0 1 0 

Evolutionary Algorithm 
Search   Software Testing   SBSE 
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•  The ant selects stochastically its next 
   node 

•  The probability of selecting one node 
  depends on the pheromone trail and the 
  heuristic value (optional) of the edge/node 
 
•  The ant stops when a complete  
  solution is built 

 i 

  j 
 l 

m 

 k 

Ni 

τij 

ηij 

k Trail 

Heuristic 

Ant Colony Optimization 
Search   Software Testing   SBSE 
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•  What is software testing? 
–  It is the process of running a software product or a portion of it in 

a controlled environment with a given input followed by the 
collection and analysis of the output and/or other relevant 
information of the execution. 

•  What is the goal of software testing? 
–  To find out errors in a portion or the complete software product 

and/or to assure with a high probability that the software is 
correct (according to the requirements). 

Software Testing: Definition and Goal 
Search   Software Testing   SBSE 
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Software testing is important because… 
 

60.000 M$ annually 
(0,6% GDP) in USA 

Software 
errors 

60 % of project 
cost 

Software Testing: Impact 
Search   Software Testing   SBSE 
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Classification of testing techniques (by goal) 
–  Unit testing: test one module of the software. 
–  Integration testing: test the interfaces between different modules in the software. 
–  System testing: test the complete system. 
–  Validation testing: test if the software system fulfills the requirements. 
–  Acceptance testing: the client test whether the system is what s/he wants. 
–  Regression testing: after a change in the software test whether a new error has 

been introduced. 
–  Stress testing: test the system under a high load 
–  Load testing: test the response of the system under a normal load of work. 

 

Software Testing: Classification 
Search   Software Testing   SBSE 
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1.0, 2.3 Error! 

Test case design Test case run Check of results 

2.7, 5.4 

JUnit, EasyMock, 
XMLUnit, Jmeter, 

Selenium 
Automatic test 

case generation   

Software Testing: Automatization 

Search 
Techniques 

Search Based 
Software Testing 

Search   Software Testing   SBSE 
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Search Based Software Engineering 

Search Based 
Software Engineering 

(SBSE) 

Search Based 
Software Testing 

Search   Software Testing   SBSE 
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Our Research on SBSE 
Search   Software Testing   SBSE 

•  Software Project Scheduling 

•  Requirements Selection 

•  Automatic Refactoring 

•  White-box Software Testing 

•  Testing of Concurrent Systems (based on Model Checking) 

•  Testing Complexity 

•  Prioritized Pairwise Combinatorial Interaction Testing 

•  Test Sequences for Functional Testing 

•  Test Suite Minimization in Regression Testing 

•  Software Product Lines Testing 
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Background   Proposal   Results 

J. Ferrer et al.,  Inf. & Soft. Tech. 2013 
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Motivation 

How difficult is to test the Software using 
automatic test data generation? 

Can we estimate the difficulty 
analyzing the program? 

This kind of measure would be useful 
to estimate the testing costs 

Background   Proposal   Results 
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v(G)=E-N+2 

One entry and exit node 

v(G)=E-N+1 

Strongly connected graph 

McCabe’s Cyclomatic Complexity 

What does it mean? 
–  Number of linearly independent paths of the graph 
–  Linearly independent paths find errors with high probability 
–  The measure is an estimation of the cost of testing the code 

Background   Proposal   Results 
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Other Measures 

2. Static Measures

Quantitative models are frequently used in di↵erent engineering disciplines for predicting situations, due
dates, required cost, and so on. These quantitative models are based on some kind of measure made on
project data or items. Software Engineering is not an exception. A lot of measures are defined in Software
Engineering in order to predict software quality [30], task e↵ort [8], etc. We are interested here in measures
made on source code pieces. We distinguish two kinds of measures: dynamic, which require the execution
of the program, and static, which do not.

Some time ago, project managers began to worry about concepts like productivity and quality, then
the lines of code (LOC) metric was proposed. Nowadays, the LOC metric is still the primary quantitative
measure in use. An examination of the main metrics reveals that most of them confuse the complexity
of a program with its size. The underlying idea of these measures are that a program will be much more
di�cult to work with than a second one if, for example, it is twice the size, has twice as many control paths
leading through it, or contains twice as many logical decisions. Unfortunately, these various ways in which
a program may increase in complexity tend to move in unison, making it di�cult to identify the multiple
dimensions of complexity.

In this section we present the measures used in this study. In a first group we select the main measures
that we found in the literature:

• Lines of Code (LOC )

• Source Lines of Code (SLOC )

• Lines of Code Equivalent (LOCE )

• Total Number of Disjunctions (TNDj )

• Total Number of Conjunctions (TNCj )

• Total Number of Equalities (TNE )

• Total Number of Inequalities (TNI )

• Total Number of Decisions (TND)

• Number of Atomic Conditions per Decision (CpD)

• Nesting Degree (N )

• Halstead’s Complexity (HD)

• McCabe’s Cyclomatic Complexity (MC )

Let’s have a look at the measures that are directly based on source lines of code (in C-based languages).
The LOC measure is a count of the number of semicolons in a method, excluding those within comments and
string literals. The SLOC measure counts the source lines that contain executable statements, declarations,
and/or compiler directives. However, comments, and blank lines are excluded. The LOCE measure [31] is
based on the idea of weighing each source line of code depending on how nested it is. The previous three
measures based on the lines of code have several disadvantages:

• Depend on the print length

• Depend of the programmer’s style for writing source code

• Depend on how many statements does one put in one line
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We have analyzed several measures as the total number of disjunctions (OR operator) and conjunctions
(AND operator) that appear in the source code, these operators join atomic conditions. The number of
(in)equalities is the number of times that the operator (! =) == is found in atomic conditions of a program.
The total number of decisions and the number of atomic conditions per decision do not require any comment.
The nesting degree is the maximum number of control flow statements that are nested one inside another.
In the following paragraphs we describe the McCabe’s cyclomatic complexity and the Halstead complexity
measures in detail.

Halstead complexity measures are software metrics [14] introduced by Maurice Howard Halstead in 1977.
Halstead’s Metrics are based on arguments derived from common sense, information theory and psychology.
The metrics are based on four easily measurable properties of the program, which are:

• n1 = the number of distinct operators

• n2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands

From these values, six measures can be defined:

• Halstead Length (HL): N = N1 +N2

• Halstead Vocabulary (HV): n = n1 + n2

• Halstead Volume (HVL): V = N ⇤ log2 n

• Halstead Di�culty (HD): HD = n1
2 ⇤ N2

n2

• Halstead Level (HLV): L = 1
HD

• Halstead E↵ort (HE): E = HD ⇤ V

• Halstead Time (HT): T = E
18

• Halstead Bugs (HB): B = V
3000

The most basic one is the Halstead Length, which simply totals the number of operators and operands.
A small number of statements with a high Halstead Volume would suggest that the individual statements are
quite complex. The Halstead Vocabulary gives a clue on the complexity of the statements. For example, it
highlights if a small number of operators are used repeatedly (less complex) or if a large number of di↵erent
operators are used, which will inevitably be more complex. The Halstead Volume uses the length and the
vocabulary to give a measure of the amount of code written. The Halstead Di�culty uses a formula to assess
the complexity based on the number of unique operators and operands. It suggests how di�cult the code
is to write and maintain. The Halstead Level is the inverse of the Halstead Di�culty: a low value means
the program is prone to errors. The Halstead E↵ort attempts to estimate the amount of work that it would
take to recode a particular method. The Halstead Time is the time to implement or understand a program
and it is proportional to the e↵ort. The experiments were used for calibrating this quantity but nowadays
it is not true that dividing the e↵ort by 18 gives an approximation for the time in seconds. The Halstead
Bugs attempts to estimate the number of bugs that exist in a particular piece of code.

McCabe’s cyclomatic complexity is a complexity measure related to the number of ways there exists to
traverse a piece of code. This measure determines the minimum number of test cases needed to test all the
paths using linearly independent circuits [25]. Cyclomatic complexity is computed using the control flow
graph of the program: the nodes of the graph correspond to indivisible groups of sentences of a program
(basic blocks), and a directed edge connects two nodes if the second group of sentences might be executed
immediately after the first one. Cyclomatic complexity may also be applied to individual functions, modules,
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methods or classes within a program, and is formally defined as follows:

v(G) = Ed�Nd+ 2P ; (1)

where Ed is the number of edges of the graph, Nd is the number of nodes of the graph and P is the number
of connected components.

The correlation between the cyclomatic complexity and the number of software faults has been studied
in some research articles [6, 18]. Most such studies find a strong positive correlation between the cyclomatic
complexity and the errors: the higher the complexity the larger the number of faults. For example, a 2008
study by metric-monitoring software supplier Energy [11] analyzed classes of open-source Java applications
and divided them into two sets based on how common mistakes were found in them. They found a strong
correlation between the cyclomatic complexity and their faultiness, with classes with a combined complexity
of 11 having a probability of being fault-prone of just 0.28, rising to 0.98 for classes with a complexity of 74.

In addition to this correlation between complexity and errors, a connection has been found between
complexity and di�culty to understand software. Nowadays, the subjective reliability of software is expressed
in statements such as “I understand this program well enough to know that the tests I have executed are
adequate to provide my desired level of confidence on it”. For that reason, we make a close link between
complexity and di�culty of discovering errors. Software complexity metrics developed by Halstead and
McCabe are related to the di�culty programmers experience in locating errors in code [9]. They can be
used in providing feedback to programmers about the complexity of the code they have developed and to
managers about the resources that will be necessary to maintain particular sections of code.

Since McCabe proposed the cyclomatic complexity, it has received several criticisms. Weyuker [34]
concluded that one of the obvious intuitive weaknesses of the cyclomatic complexity is that it makes no
provision for distinguishing between programs which perform very little computation and those which per-
form massive amounts of computation, provided that they have the same decision structure. Piwarski [29]
noticed that cyclomatic complexity is the same for N nested if statements and N sequential if statements.
Moreover, we find the same weaknesses in the group of Halstead’s metrics. No notice is made for the nesting
degree, which may increase the e↵ort required by the program severely. The solution of both McCabe’s and
Halstead’s weakness is a factor to consider that a nested statement is more complex. For example, we have
also studied the LOCE measure that takes into account whether a statement is nested or not.

The proposed existing measures of decision complexity tend to be based upon a graph theoretical analysis
of a program control structure like McCabe’s complexity. Such measures are meaningful at the program and
subprogram level, but metrics computed at those levels will depend on program or subprogram size. However,
the values of these metrics primarily depend upon the number of decision points within a program. This
suggests that we can compute a size-independent measure of decision complexity by measuring the density
of decisions within a program. In addition we have considered making the LOCE measure size-independent.
The resulting expression takes into account the nesting degree and the density of the sentences. Following
this assumption, we consider in this paper two measures derived from some of the first group:

• Density of Decisions (DD) = TND/LOC.

• Density of LOCE (DLOCE) = LOCE/LOC.

Finally, we present the dynamic measure used in the study: Branch Coverage. Before defining a coverage
measure, it is necessary to determine which kind of element is going to be “covered”. Di↵erent coverage
measures can be defined depending on the kind of element to cover. Statement coverage, for example, is
defined as the percentage of statements (sentences) that are executed. In this work we use Branch Coverage,
which is the percentage of branches of the program that are traversed. This coverage measure is used in
most of the related articles in the literature. We formally define the Branch Coverage as follows: Let P be
a program, we denote with BP the set of branches of the program and with BranchExecP (C) the set of
branches covered in P due to the execution of a given test suite, C. We define the branch coverage of the
test suite C, BrCovP (C), as the ratio between the traversed branches in the executions of the program P
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We have analyzed several measures as the total number of disjunctions (OR operator) and conjunctions
(AND operator) that appear in the source code, these operators join atomic conditions. The number of
(in)equalities is the number of times that the operator (! =) == is found in atomic conditions of a program.
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Then, the BCE is defined as:

BCE =
1

|A|
X

(i,j)2A

E[BBi, BBj ]. (19)

In the experimental section we analyze the new complexity measure over program artifacts, nevertheless
we illustrate here its computation based on the piece of code shown in Figure 1. First, we compute the
Control Flow Graph (CFG) of this piece of code, which can be seen in Figure 2. This CFG is composed of
BBs and transitions among the BBs. Interpreted as a Markov chain, the basic blocks are the states, and
the transitions are defined by the probabilities to move from one basic block to another. These probabilities
depend on the condition associated to a concrete branch. For example, to move from BB1 to BB2 in our
example, the condition (x < 0)||(y < 2) must be true, then according to equations (2) to (10) the probability
of this transition is:

P ((x < 0)||(y < 2)) = P (x < 0) + P (y < 2)� P (x < 0) ⇤ P (y < 2) = 1
2 + 1

2 � 1
2 ⇤ 1

2 = 3
4 = 0.75.

/* BB1 */

if (x < 0) || (y < 2)

{
/* BB2 */

y=5;

}
else

{
/* BB3 */

x=y-3;

while (y > 5) || (x > 5)

{
/* BB4 */

y=x-5;

}
/* BB5 */

x=x-3;

}
/* BB6 */

Figure 1: A piece of code to illustrate the computation of Branch Coverage Expectation

Once we have computed all the transition probabilities, we build the transition matrix that represents
the Markov chain.

P =

0

BBBBBB@

0.0 0.75 0.25 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.0 0.0 1
1 0.0 0.0 0.0 0.0 0.0

1

CCCCCCA

We can now compute the stationary probabilities ⇡ and the frequency of appearance E[BBi] of the basic
blocks in one execution of the program (see Table 1). It is sure that the control flow of the program traverses

8

BB1

BB2 BB3

BB5

BB6

BB4

P(BB6,BB1)=1

P(BB2,BB6)=1

P(BB5,BB6)=1

P(BB3,BB5)=0.25
P(BB3,BB4)=0.75

P(BB4,BB4)=0.75

P(BB4,BB5)=0.25

P(BB1,BB3)=0.25

P(BB1,BB2)=0.75

Figure 2: The CFG and the probabilities used to build a Markov Chain of the piece of code of Figure 1

exactly once the BB1 and BB6 in one run. In this way, the start and the end of the program always have
a E[BBi] = 1. An example of the computation of the mathematical expectation is:

E(BB2) =
⇡2
⇡1

= 0.1875
0.2500 = 0.75.

Table 1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece of code shown above.

Stationary Probabilities ⇡i Frequency of Appearance E[BBi]
BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

The stationary probability and the frequency of appearance of the BBs in a single execution of the piece
of code can be seen in Table 1. Now, we are able to compute the probability of appearance of a branch in
one single run. For example the expectation of traversing the branch BB3 �BB4 is:

E[BB3, BB4] = E(BB3) ⇤ P34 = 1
4 ⇤ 3

4 = 3
16 = 0.1875.

In Figure 3 we show the mathematical expectations of traversing all the branches of the CFG of our
example in one single execution. So, finally we can compute the BCE by averaging the expectations of
traversing the branches which have a value lower than 1/2. We have excluded those values equals to 1/2
because both branches have the same value. In case all branches have the expectation of 1/2, then the BCE
is 1/2. In addition, a program with a Branch Coverage Expectation value of 1/2 would be the easiest one
to be tested. In this example the value of BCE is :

BCE = E[BB1,BB3]+E[BB3,BB4]+E[BB3,BB5]+E[BB4,BB5]+E[BB5,BB6]
5 =

1
4+

3
16+

1
16+

3
16+

1
4

5 = 3
16 = 0.1875.

9

Our Proposal: Branch Coverage Expectation  

P (c1&&c2) = P (c1) ⇤ P (c2), (7)

P (c1||c2) = P (c1) + P (c2)� P (c1) ⇤ P (c2), (8)

P (¬c1) = 1� P (c1), (9)

P (a < b) =
1

2
, (10)

P (a  b) =
1

2
, (11)

P (a > b) =
1

2
, (12)

P (a � b) =
1

2
, (13)

P (a == b) = q, (14)

P (a! = b) = 1� q, (15)

where c1 and c2 are conditions.
We establish a 1/2 probability when the operators are ordering relational operators (<,, >,�). Despite

that the actual probability in a random situation is not always 1/2, we have selected the value with the
lowest error rate. In the case of equalities and inequalities the probabilities are q and 1 � q, respectively,
where q is a parameter of the measure and its value should be adjusted based on the experience. Satisfying
an equality is, in general, a hard task and, thus, q should be close to zero. This parameter could be highly
dependent on the data dependencies of the program. The quality of the complexity measure depends on a
good election for q. We delay to future work the thorough analysis of this parameter. Based on a previous
phase for setting parameters, we use q = 1/16 for the experimental analysis.

Then, once we have the CFG completed with the transition probabilities, the generation of the transition
matrix is automatic. This matrix relates the states and the probability to move from one to another. We
assume, without loss of generality, that there is only one entry and exit basic block in the code. Then,
in order to obtain a positive-recurrent irreducible Markov chain we add a fictional link from the exit to
the entry basic block (labelled as BB1) having probability 1. We then compute the stationary probability
⇡ and the frequency of appearance of each basic block in one single execution of the program (E[BBi]).
The stationary probability of a basic block is the probability of appearance in infinite program executions
starting in any state. On the other hand, the frequency of appearance of a basic block is the mathematical
expectation of traversing the basic block in one single execution and is computed as:

E[BBi] =
⇡i

⇡1
, (16)

where ⇡1 is the stationary probability of the entry basic block, BB1.

Thus, the expectation of traversing a branch (i, j) is computed from the frequency of appearance of the
previous basic block and the probability to take the concrete branch from the previous basic block as:

E[BBi, BBj ] = E[BBi] ⇤ Pij (17)

Finally, we define the Branch Coverage Expectation (BCE) as the average of the values E[BBi, BBj ]
with a value lower than 1/2. If a program has a low value of BCE then a random test case generator is
supposed to require a large number of test cases to obtain full branch coverage. The BCE is bounded in the
interval (0, 1/2]. Formally, let A be the set of edges with E[BBi, BBj ] < 1/2:

A = {(i, j)|E[BBi, BBj ] <
1

2
}. (18)

7
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BB1

BB2 BB3

BB5

BB6

BB4

P(BB6,BB1)=1

P(BB2,BB6)=1

P(BB5,BB6)=1

P(BB3,BB5)=0.25
P(BB3,BB4)=0.75

P(BB4,BB4)=0.75

P(BB4,BB5)=0.25

P(BB1,BB3)=0.25

P(BB1,BB2)=0.75

Figure 2: The CFG and the probabilities used to build a Markov Chain of the piece of code of Figure 1

exactly once the BB1 and BB6 in one run. In this way, the start and the end of the program always have
a E[BBi] = 1. An example of the computation of the mathematical expectation is:

E(BB2) =
⇡2
⇡1

= 0.1875
0.2500 = 0.75.

Table 1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece of code shown above.

Stationary Probabilities ⇡i Frequency of Appearance E[BBi]
BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

The stationary probability and the frequency of appearance of the BBs in a single execution of the piece
of code can be seen in Table 1. Now, we are able to compute the probability of appearance of a branch in
one single run. For example the expectation of traversing the branch BB3 �BB4 is:

E[BB3, BB4] = E(BB3) ⇤ P34 = 1
4 ⇤ 3

4 = 3
16 = 0.1875.

In Figure 3 we show the mathematical expectations of traversing all the branches of the CFG of our
example in one single execution. So, finally we can compute the BCE by averaging the expectations of
traversing the branches which have a value lower than 1/2. We have excluded those values equals to 1/2
because both branches have the same value. In case all branches have the expectation of 1/2, then the BCE
is 1/2. In addition, a program with a Branch Coverage Expectation value of 1/2 would be the easiest one
to be tested. In this example the value of BCE is :

BCE = E[BB1,BB3]+E[BB3,BB4]+E[BB3,BB5]+E[BB4,BB5]+E[BB5,BB6]
5 =

1
4+

3
16+

1
16+

3
16+

1
4

5 = 3
16 = 0.1875.
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with the test suite C and the number of branches of the program, i.e.,

BrCovP (C) =
|BranchExecP (C)|

|BP |
. (2)

The adequacy criterion of branch coverage states that a test suite C for a program P is “adequate” when
BrCovp(C) = 1.

3. New complexity measure: Branch Coverage Expectation

This section is aimed at presenting a new complexity measure that might help testers to estimate the
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Pij � 0, (3)
nX

j=1

Pij = 1. (4)

Matrices fulfilling the above equations are called stochastic. Let us denote with the column vector q(t)
the probability distribution of the states at step t. The component qi(t) is the probability of having state
i at step t. A state which is reached infinitely often in a finite Markov chain is called positive-recurrent.
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⇡T1 = 1. (6)

3.2. Definition of BCE

In our case the Markov model is built from the Control Flow Graph (CFG) of the program, where the
states of the Markov chain are the basic blocks of the program. A basic block (BB) is a portion of the code
that is executed sequentially with no interruption. It has one entry point and one exit point, meaning that
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rest of the instructions are necessarily executed exactly once, in order. In order to completely characterize
a Markov chain we must assign a value to the edges among vertices. The transition probabilities of all
branches are computed according to the logical expressions that appear in each condition. We recursively
define this probability as follows:
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Figure 2: The CFG and the probabilities used to build a Markov Chain of the piece of code of Figure 1

exactly once the BB1 and BB6 in one run. In this way, the start and the end of the program always have
a E[BBi] = 1. An example of the computation of the mathematical expectation is:

E(BB2) =
⇡2
⇡1

= 0.1875
0.2500 = 0.75.

Table 1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece of code shown above.
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BB1 0.2500 1.00
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BB5 0.0625 0.25
BB6 0.2500 1.00

The stationary probability and the frequency of appearance of the BBs in a single execution of the piece
of code can be seen in Table 1. Now, we are able to compute the probability of appearance of a branch in
one single run. For example the expectation of traversing the branch BB3 �BB4 is:

E[BB3, BB4] = E(BB3) ⇤ P34 = 1
4 ⇤ 3

4 = 3
16 = 0.1875.

In Figure 3 we show the mathematical expectations of traversing all the branches of the CFG of our
example in one single execution. So, finally we can compute the BCE by averaging the expectations of
traversing the branches which have a value lower than 1/2. We have excluded those values equals to 1/2
because both branches have the same value. In case all branches have the expectation of 1/2, then the BCE
is 1/2. In addition, a program with a Branch Coverage Expectation value of 1/2 would be the easiest one
to be tested. In this example the value of BCE is :

BCE = E[BB1,BB3]+E[BB3,BB4]+E[BB3,BB5]+E[BB4,BB5]+E[BB5,BB6]
5 =

1
4+

3
16+

1
16+

3
16+

1
4

5 = 3
16 = 0.1875.

9

P (c1&&c2) = P (c1) ⇤ P (c2), (7)

P (c1||c2) = P (c1) + P (c2)� P (c1) ⇤ P (c2), (8)

P (¬c1) = 1� P (c1), (9)

P (a < b) =
1

2
, (10)

P (a  b) =
1

2
, (11)

P (a > b) =
1

2
, (12)

P (a � b) =
1

2
, (13)

P (a == b) = q, (14)

P (a! = b) = 1� q, (15)

where c1 and c2 are conditions.
We establish a 1/2 probability when the operators are ordering relational operators (<,, >,�). Despite

that the actual probability in a random situation is not always 1/2, we have selected the value with the
lowest error rate. In the case of equalities and inequalities the probabilities are q and 1 � q, respectively,
where q is a parameter of the measure and its value should be adjusted based on the experience. Satisfying
an equality is, in general, a hard task and, thus, q should be close to zero. This parameter could be highly
dependent on the data dependencies of the program. The quality of the complexity measure depends on a
good election for q. We delay to future work the thorough analysis of this parameter. Based on a previous
phase for setting parameters, we use q = 1/16 for the experimental analysis.

Then, once we have the CFG completed with the transition probabilities, the generation of the transition
matrix is automatic. This matrix relates the states and the probability to move from one to another. We
assume, without loss of generality, that there is only one entry and exit basic block in the code. Then,
in order to obtain a positive-recurrent irreducible Markov chain we add a fictional link from the exit to
the entry basic block (labelled as BB1) having probability 1. We then compute the stationary probability
⇡ and the frequency of appearance of each basic block in one single execution of the program (E[BBi]).
The stationary probability of a basic block is the probability of appearance in infinite program executions
starting in any state. On the other hand, the frequency of appearance of a basic block is the mathematical
expectation of traversing the basic block in one single execution and is computed as:

E[BBi] =
⇡i

⇡1
, (16)

where ⇡1 is the stationary probability of the entry basic block, BB1.

Thus, the expectation of traversing a branch (i, j) is computed from the frequency of appearance of the
previous basic block and the probability to take the concrete branch from the previous basic block as:

E[BBi, BBj ] = E[BBi] ⇤ Pij (17)

Finally, we define the Branch Coverage Expectation (BCE) as the average of the values E[BBi, BBj ]
with a value lower than 1/2. If a program has a low value of BCE then a random test case generator is
supposed to require a large number of test cases to obtain full branch coverage. The BCE is bounded in the
interval (0, 1/2]. Formally, let A be the set of edges with E[BBi, BBj ] < 1/2:

A = {(i, j)|E[BBi, BBj ] <
1

2
}. (18)
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Then, the BCE is defined as:

BCE =
1

|A|
X

(i,j)2A

E[BBi, BBj ]. (19)

In the experimental section we analyze the new complexity measure over program artifacts, nevertheless
we illustrate here its computation based on the piece of code shown in Figure 1. First, we compute the
Control Flow Graph (CFG) of this piece of code, which can be seen in Figure 2. This CFG is composed of
BBs and transitions among the BBs. Interpreted as a Markov chain, the basic blocks are the states, and
the transitions are defined by the probabilities to move from one basic block to another. These probabilities
depend on the condition associated to a concrete branch. For example, to move from BB1 to BB2 in our
example, the condition (x < 0)||(y < 2) must be true, then according to equations (2) to (10) the probability
of this transition is:

P ((x < 0)||(y < 2)) = P (x < 0) + P (y < 2)� P (x < 0) ⇤ P (y < 2) = 1
2 + 1

2 � 1
2 ⇤ 1

2 = 3
4 = 0.75.

/* BB1 */

if (x < 0) || (y < 2)

{
/* BB2 */

y=5;

}
else

{
/* BB3 */

x=y-3;

while (y > 5) || (x > 5)

{
/* BB4 */

y=x-5;

}
/* BB5 */

x=x-3;

}
/* BB6 */

Figure 1: A piece of code to illustrate the computation of Branch Coverage Expectation

Once we have computed all the transition probabilities, we build the transition matrix that represents
the Markov chain.

P =

0

BBBBBB@

0.0 0.75 0.25 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.0 0.0 1
1 0.0 0.0 0.0 0.0 0.0

1

CCCCCCA

We can now compute the stationary probabilities ⇡ and the frequency of appearance E[BBi] of the basic
blocks in one execution of the program (see Table 1). It is sure that the control flow of the program traverses
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Figure 2: The CFG and the probabilities used to build a Markov Chain of the piece of code of Figure 1

exactly once the BB1 and BB6 in one run. In this way, the start and the end of the program always have
a E[BBi] = 1. An example of the computation of the mathematical expectation is:

E(BB2) =
⇡2
⇡1

= 0.1875
0.2500 = 0.75.

Table 1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece of code shown above.

Stationary Probabilities ⇡i Frequency of Appearance E[BBi]
BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

The stationary probability and the frequency of appearance of the BBs in a single execution of the piece
of code can be seen in Table 1. Now, we are able to compute the probability of appearance of a branch in
one single run. For example the expectation of traversing the branch BB3 �BB4 is:

E[BB3, BB4] = E(BB3) ⇤ P34 = 1
4 ⇤ 3

4 = 3
16 = 0.1875.

In Figure 3 we show the mathematical expectations of traversing all the branches of the CFG of our
example in one single execution. So, finally we can compute the BCE by averaging the expectations of
traversing the branches which have a value lower than 1/2. We have excluded those values equals to 1/2
because both branches have the same value. In case all branches have the expectation of 1/2, then the BCE
is 1/2. In addition, a program with a Branch Coverage Expectation value of 1/2 would be the easiest one
to be tested. In this example the value of BCE is :

BCE = E[BB1,BB3]+E[BB3,BB4]+E[BB3,BB5]+E[BB4,BB5]+E[BB5,BB6]
5 =

1
4+

3
16+

1
16+

3
16+

1
4

5 = 3
16 = 0.1875.
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an equality is, in general, a hard task and, thus, q should be close to zero. This parameter could be highly
dependent on the data dependencies of the program. The quality of the complexity measure depends on a
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where ⇡1 is the stationary probability of the entry basic block, BB1.

Thus, the expectation of traversing a branch (i, j) is computed from the frequency of appearance of the
previous basic block and the probability to take the concrete branch from the previous basic block as:

E[BBi, BBj ] = E[BBi] ⇤ Pij (17)

Finally, we define the Branch Coverage Expectation (BCE) as the average of the values E[BBi, BBj ]
with a value lower than 1/2. If a program has a low value of BCE then a random test case generator is
supposed to require a large number of test cases to obtain full branch coverage. The BCE is bounded in the
interval (0, 1/2]. Formally, let A be the set of edges with E[BBi, BBj ] < 1/2:
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exactly once the BB1 and BB6 in one run. In this way, the start and the end of the program always have
a E[BBi] = 1. An example of the computation of the mathematical expectation is:

E(BB2) =
⇡2
⇡1

= 0.1875
0.2500 = 0.75.

Table 1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece of code shown above.
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BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

The stationary probability and the frequency of appearance of the BBs in a single execution of the piece
of code can be seen in Table 1. Now, we are able to compute the probability of appearance of a branch in
one single run. For example the expectation of traversing the branch BB3 �BB4 is:

E[BB3, BB4] = E(BB3) ⇤ P34 = 1
4 ⇤ 3

4 = 3
16 = 0.1875.

In Figure 3 we show the mathematical expectations of traversing all the branches of the CFG of our
example in one single execution. So, finally we can compute the BCE by averaging the expectations of
traversing the branches which have a value lower than 1/2. We have excluded those values equals to 1/2
because both branches have the same value. In case all branches have the expectation of 1/2, then the BCE
is 1/2. In addition, a program with a Branch Coverage Expectation value of 1/2 would be the easiest one
to be tested. In this example the value of BCE is :
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Table A.10: The correlation coe�cients among all the measures analyzed in the benchmark 100%CP
HD MC LOCE N DD DLOCE BCE LOC SLOCTNDjTNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD - 0.796 0.786 -0.108 0.052 -0.035 0.285 0.932 0.853 0.742 0.731 0.644 0.639 0.799 0.454 0.870 0.842 0.864 1.0 0.920 0.920 0.864 0.070 -0.101 0.077
MC 0.796 - 0.965 0.266 0.519 0.408 0.025 0.805 0.962 0.925 0.934 0.829 0.811 0.985 0.524 0.976 0.969 0.977 -0.796 0.954 0.954 0.977 -0.150-0.226-0.074
LOCE 0.786 0.965 - 0.344 0.515 0.474 -0.038 0.796 0.974 0.884 0.882 0.822 0.789 0.976 0.501 0.945 0.938 0.945 -0.786 0.921 0.921 0.945 -0.186-0.251-0.133
N -0.108 0.266 0.344 - 0.765 0.877 -0.540 -0.207 0.180 0.235 0.240 0.311 0.234 0.276 0.136 0.138 0.127 0.139 0.108 0.089 0.089 0.139 -0.543-0.381-0.434
DD 0.052 0.519 0.515 0.765 - 0.912 -0.377 -0.043 0.405 0.449 0.489 0.485 0.437 0.538 0.283 0.368 0.367 0.372 -0.052 0.302 0.302 0.372 -0.439-0.304-0.311
DLOCE-0.035 0.408 0.474 0.877 0.912 - -0.485 -0.132 0.336 0.352 0.380 0.410 0.353 0.418 0.217 0.270 0.258 0.271 0.035 0.208 0.208 0.271 -0.504-0.345-0.397
BCE 0.285 0.025 -0.038 -0.540-0.377 -0.485 - 0.307 0.081 0.065 0.008 -0.124 0.009 0.017 0.078 0.121 0.129 0.120 -0.285 0.159 0.159 0.120 0.510 0.375 0.534
LOC 0.932 0.805 0.796 -0.207-0.043 -0.132 0.307 - 0.879 0.753 0.730 0.634 0.646 0.810 0.419 0.891 0.892 0.890 -0.932 0.910 0.910 0.890 0.136 -0.053 0.120
SLOC 0.853 0.962 0.974 0.180 0.405 0.336 0.081 0.879 - 0.884 0.878 0.794 0.778 0.973 0.492 0.975 0.970 0.975 -0.853 0.960 0.960 0.975 -0.091-0.194-0.050
TNDj 0.742 0.925 0.884 0.235 0.449 0.352 0.065 0.753 0.884 - 0.773 0.813 0.719 0.897 0.515 0.919 0.908 0.919 -0.742 0.900 0.900 0.919 -0.119-0.175-0.036
TNCj 0.731 0.934 0.882 0.240 0.489 0.380 0.008 0.730 0.878 0.773 - 0.734 0.806 0.905 0.497 0.913 0.901 0.913 -0.731 0.895 0.895 0.913 -0.158-0.235-0.072
TNE 0.644 0.829 0.822 0.311 0.485 0.410 -0.124 0.634 0.794 0.813 0.734 - 0.618 0.822 0.435 0.798 0.785 0.797 -0.644 0.779 0.779 0.797 -0.272-0.279-0.207
TNI 0.639 0.811 0.789 0.234 0.437 0.353 0.009 0.646 0.778 0.719 0.806 0.618 - 0.799 0.439 0.794 0.791 0.795 -0.639 0.774 0.774 0.795 -0.121-0.201-0.095
TND 0.799 0.985 0.976 0.276 0.538 0.418 0.017 0.810 0.973 0.897 0.905 0.822 0.799 - 0.503 0.961 0.959 0.962 -0.799 0.935 0.935 0.962 -0.147-0.226-0.082
CpD 0.454 0.524 0.501 0.136 0.283 0.217 0.078 0.419 0.492 0.515 0.497 0.435 0.439 0.503 - 0.524 0.518 0.523 -0.454 0.514 0.514 0.523 -0.089-0.132 0.035
HL 0.870 0.976 0.945 0.138 0.368 0.270 0.121 0.891 0.975 0.919 0.913 0.798 0.794 0.961 0.524 - 0.991 1.0 -0.870 0.989 0.989 1.0 -0.071-0.180-0.012
HV 0.842 0.969 0.938 0.127 0.367 0.258 0.129 0.892 0.970 0.908 0.901 0.785 0.791 0.959 0.518 0.991 - 0.994 -0.842 0.971 0.971 0.994 -0.061-0.172-0.003
HVL 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 - -0.864 0.987 0.987 1.0 -0.072-0.181-0.011
HLV -1.0 -0.796 -0.786 0.108 -0.052 0.035 -0.285 -0.932-0.853-0.742-0.731-0.644-0.639-0.799-0.454 -0.870-0.842-0.864 - -0.920-0.920-0.864 -0.070 0.101 -0.077
HE 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 -0.920 - 1.0 0.987 -0.046-0.168 0.006
HT 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 -0.920 1.0 - 0.987 -0.046-0.168 0.006
HB 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 1.0 -0.864 0.987 0.987 - -0.072-0.181-0.011
ES 0.070 -0.150 -0.186 -0.543-0.439 -0.504 0.510 0.136 -0.091-0.119-0.158-0.272-0.121-0.147-0.089 -0.071-0.061-0.072-0.070-0.046-0.046-0.072 - 0.365 0.445
GA -0.101-0.226 -0.251 -0.381-0.304 -0.345 0.375 -0.053-0.194-0.175-0.235-0.279-0.201-0.226-0.132 -0.180-0.172-0.181 0.101 -0.168-0.168-0.181 0.365 - 0.403
RND 0.077 -0.074 -0.133 -0.434-0.311 -0.397 0.534 0.120 -0.050-0.036-0.072-0.207-0.095-0.082 0.035 -0.012-0.003-0.011-0.077 0.006 0.006 -0.011 0.445 0.403 -
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Table A.11: The correlation coe�cients among all the measures analyzed in the benchmark ¬100%CP
HD MC LOCE N DD DLOCE BCE LOC SLOCTNDjTNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD - 0.698 0.359 -0.062 0.023 0.014 0.051 0.664 0.648 0.653 0.651 0.557 0.569 0.463 0.441 0.764 0.576 0.747 -1.0 0.872 0.872 0.747 0.069 0.067 0.079
MC 0.698 - 0.571 0.257 0.432 0.351 -0.142 0.472 0.667 0.936 0.937 0.803 0.827 0.718 0.671 0.782 0.762 0.786 -0.698 0.803 0.803 0.786 -0.177-0.168-0.173
LOCE 0.359 0.571 - 0.692 0.590 0.833 -0.461 0.414 0.717 0.435 0.432 0.479 0.485 0.814 0.086 0.564 0.503 0.560 -0.359 0.524 0.524 0.560 -0.461-0.452-0.476
N -0.062 0.257 0.692 - 0.708 0.870 -0.575 -0.160 0.190 0.163 0.161 0.229 0.220 0.502 -0.031 0.020 0.009 0.019 0.062 -0.007-0.007 0.019 -0.563-0.554-0.589
DD 0.023 0.432 0.590 0.708 - 0.774 -0.426 -0.178 0.280 0.306 0.304 0.385 0.372 0.723 0.026 0.089 0.056 0.087 -0.023 0.070 0.070 0.087 -0.476-0.473-0.497
DLOCE 0.014 0.351 0.833 0.870 0.774 - -0.556 -0.113 0.284 0.247 0.243 0.308 0.291 0.593 0.013 0.096 0.076 0.095 -0.014 0.073 0.073 0.095 -0.577-0.564-0.602
BCE 0.051 -0.142 -0.461 -0.575-0.426 -0.556 - 0.075 -0.143-0.078-0.079-0.200-0.138-0.318 0.080 -0.021-0.006-0.020-0.051 0.001 0.001 -0.020 0.714 0.698 0.732
LOC 0.664 0.472 0.414 -0.160-0.178 -0.113 0.075 - 0.857 0.398 0.397 0.386 0.406 0.494 0.144 0.906 0.821 0.901 -0.664 0.874 0.874 0.901 0.102 0.099 0.116
SLOC 0.648 0.667 0.717 0.190 0.280 0.284 -0.143 0.857 - 0.533 0.532 0.549 0.572 0.834 0.152 0.916 0.813 0.910 -0.648 0.875 0.875 0.910 -0.137-0.137-0.137
TNDj 0.653 0.936 0.435 0.163 0.306 0.247 -0.078 0.398 0.533 - 0.849 0.753 0.781 0.555 0.747 0.702 0.697 0.707 -0.653 0.731 0.731 0.707 -0.110-0.101-0.102
TNCj 0.651 0.937 0.432 0.161 0.304 0.243 -0.079 0.397 0.532 0.849 - 0.753 0.771 0.551 0.746 0.702 0.697 0.707 -0.651 0.731 0.731 0.707 -0.116-0.107-0.111
TNE 0.557 0.803 0.479 0.229 0.385 0.308 -0.200 0.386 0.549 0.753 0.753 - 0.623 0.600 0.544 0.633 0.619 0.636 -0.557 0.646 0.646 0.636 -0.278-0.270-0.270
TNI 0.569 0.827 0.485 0.220 0.372 0.291 -0.138 0.406 0.572 0.781 0.771 0.623 - 0.619 0.559 0.658 0.645 0.662 -0.569 0.671 0.671 0.662 -0.207-0.198-0.204
TND 0.463 0.718 0.814 0.502 0.723 0.593 -0.318 0.494 0.834 0.555 0.551 0.600 0.619 - 0.132 0.688 0.605 0.683 -0.463 0.648 0.648 0.683 -0.338-0.336-0.348
CpD 0.441 0.671 0.086 -0.031 0.026 0.013 0.080 0.144 0.152 0.747 0.746 0.544 0.559 0.132 - 0.394 0.436 0.402 -0.441 0.437 0.437 0.402 0.026 0.026 0.031
HL 0.764 0.782 0.564 0.020 0.089 0.096 -0.021 0.906 0.916 0.702 0.702 0.633 0.658 0.688 0.394 - 0.932 0.999 -0.764 0.980 0.980 0.999 -0.021-0.018-0.010
HV 0.576 0.762 0.503 0.009 0.056 0.076 -0.006 0.821 0.813 0.697 0.697 0.619 0.645 0.605 0.436 0.932 - 0.946 -0.576 0.874 0.874 0.946 -0.040-0.030-0.022
HVL 0.747 0.786 0.560 0.019 0.087 0.095 -0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 - -0.747 0.974 0.974 1.0 -0.023-0.020-0.011
HLV -1.0 -0.698 -0.359 0.062 -0.023 -0.014 -0.051 -0.664-0.648-0.653-0.651-0.557-0.569-0.463-0.441 -0.764-0.576-0.747 - -0.872-0.872-0.747 -0.069-0.067-0.079
HE 0.872 0.803 0.524 -0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 -0.872 - 1.0 0.974 0.004 0.005 0.016
HT 0.872 0.803 0.524 -0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 -0.872 1.0 - 0.974 0.004 0.005 0.016
HB 0.747 0.786 0.560 0.019 0.087 0.095 -0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 1.0 -0.747 0.974 0.974 1.0 -0.023-0.020-0.011
ES 0.069 -0.177 -0.461 -0.563-0.476 -0.577 0.714 0.102 -0.137-0.110-0.116-0.278-0.207-0.338 0.026 -0.021-0.040-0.023-0.069 0.004 0.004 -0.023 - 0.954 0.940
GA 0.067 -0.168 -0.452 -0.554-0.473 -0.564 0.698 0.099 -0.137-0.101-0.107-0.270-0.198-0.336 0.026 -0.018-0.030-0.020-0.067 0.005 0.005 -0.020 0.954 - 0.950
RND 0.079 -0.173 -0.476 -0.589-0.497 -0.602 0.732 0.116 -0.137-0.102-0.111-0.270-0.204-0.348 0.031 -0.010-0.022-0.011-0.079 0.016 0.016 -0.011 0.940 0.950 -
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measures and the total number of decisions gives us an idea of the length of the code. The Halstead Length
is highly correlated with LOC and SLOC, with a minimum value of correlation of 0.906. Moreover, the
other Halstead measures are highly correlated too, except Halstead Di�culty and Level. This indicates that
several Halstead measures are similar to a simple count of lines of code.

In this subsection we have provided an overview of static measures that are part of our study. Now, we
know the measures that are similar and those that are di↵erent. In the next section we show the measures
that are more correlated with the branch coverage, which is the way we measure the di�culty of testing a
program.

5.2. Correlation Between Coverage and Static Measures

In the previous section we showed the basic relationship among the static measures, in this section
we include the branch coverage in the study. The existing correlations between the branch coverage and
the static measures studied give us an idea of which static measures are useful to determine a priori the
complexity of the automatic test data generation task. In this study we have applied three di↵erent test
case generators, two based on evolutionary techniques (ES, GA) and one based on random testing (RND).

Table 7: Relationship between the most important static measures and the average branch coverage for all the algorithms. We
highlight the high value of correlation for each algorithm and benchmark.

100%CP ¬100%CP
ES GA RND ES GA RND

MC -0.150 -0.226 -0.074 -0.177 -0.168 -0.173
HD 0.070 -0.101 0.077 0.069 0.067 0.079

LOCE -0.186 -0.251 -0.133 -0.461 -0.452 -0.476
N -0.543 -0.381 -0.434 -0.563 -0.554 -0.589
DD -0.439 -0.304 -0.311 -0.476 -0.473 -0.497

DLOCE -0.504 -0.345 -0.397 -0.577 -0.564 -0.602
BCE 0.510 0.375 0.534 0.714 0.698 0.732

The first question we should answer is if there exists a link between the coverage and the traditional
measures of code complexity: McCabe’s, Halstead’s, and LOCE. In Table 7 we show the correlation coe�-
cients for the most important static measures and the branch coverage obtained with three automatic test
data generators. The correlations between Halstead’s Di�culty and the coverage are very low, so the answer
is no in this case. The correlation coe�cients of McCabe’s complexity are higher than Halstead Di�culty
but too low. This result was expected because, as we showed in the previous section, Halstead Di�culty is
highly correlated with McCabe’s complexity. Finally, the correlation coe�cients of LOCE indicate that it
is more correlated with the branch coverage because this measure takes into account the nested statements.
After analyzing these results, we realise that the traditional complexity measures (MC, HD, and LOCE) are
not useful to measure the di�culty of testing a program.

In the second group of measures, there exist higher correlations with branch coverage. The nesting
degree is the static measure with the highest correlation coe�cient with branch coverage in the 100%CP
benchmark for the evolutionary test case generators. On the other hand, DLOCE is more correlated than
the nesting degree in the ¬100%CP benchmark. Despite that the total number of decisions is not correlated
with coverage, as can be seen in Tables A.10 and A.11, the density of decisions correlates with the obtained
coverage, as we show in Table 7. Moreover, the density of decisions is also more correlated than the
traditional complexity measures. In Figure 6 the trend indicates that the programs with a high density of
decisions are more di�cult to test because a lower coverage is obtained.

After analyzing the LOCE measure, we supposed that if the influence of the LOC were removed by
dividing LOCE by LOC, it could be obtained a measure with a high influence of the nested level (DLOCE)
(recall that that the LOCE measure weighs those nested statements). As the nesting degree is highly
correlated with the branch coverage, the DLOCE would have high correlation too. After doing the correlation
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coverage. We have opened a way to estimate the di�culty to test a program that is better than using the
existing complexity measures or other known static measures like the nesting degree.

5.3. Another use of the Branch Coverage Expectation

As we detailed in Section 3 for each branch (BBi, BBj) the expected number of test cases required to
traverse it is 1/E[BBi, BBj ]. Then, given a number of test cases x, we can compute the number of branches
that would be theoretically traversed if the tester execute x random test cases, according to this equation:

f(x) =

����

⇢
(i, j)

����
1

E[BBi, BBj ]
< x

����� . (20)

Thanks to this estimation, we propose a theoretical prediction about the behaviour of an automatic test
data generator based on random testing.

In Figure 9 we show a plot for a particular program with the expected theoretical behaviour together
with the experimental data obtained using the average branch coverage of the 30 independent executions of
an RND generator for that program. The features of this test program are shown in Table 9. The resulting
curves show that our theoretical prediction and the experimental data are very similar. The theoretical
prediction is more optimistic because it does not take into account data dependencies. At the first steps
of the algorithm, the experimental behaviour is better than the theoretical prediction, but in the region of
high coverage (close to 90%), the behaviour of the RND test case generator is worse than expected. One
explanation for this behaviour could be the presence of data dependencies in the program, which is not
considered in the theoretical approach in order to keep it simple.
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Figure 9: Coverage against the number of test cases of the random generator and the theoretical model

This new proposal is useful to decide which is the best way of generating a test suite for a piece of work.
It could be useful to decide the parameters of an evolutionary test data generator prior to its execution, for
example, the stopping condition.

5.4. Validation on Real Programs

In this section we want to make some validation of our proposed measure on real programs. We study 10
real programs extracted from the literature and with characteristics similar to the artificial programs used in
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This new proposal is useful to decide which is the best way of generating a test suite for a piece of work.
It could be useful to decide the parameters of an evolutionary test data generator prior to its execution, for
example, the stopping condition.

5.4. Validation on Real Programs

In this section we want to make some validation of our proposed measure on real programs. We study 10
real programs extracted from the literature and with characteristics similar to the artificial programs used in
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The tester identifies the relevant test aspects (parameters) and defines 
corresponding classes (parameter values) 
 
A test case is a set of n values, one for each parameter 

 
A kind of functional (black-box) testing  

Combinatorial Interaction Testing 
Problem Definition   Proposal   Results 
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The coverage criterion will determine the degree of parameter interaction 
 
The coverage criterion is defined by its strength t (t-wise) 
 
In prioritized CIT, each t-tuple has a weight that measures the importance 
 
Tool Support: CTE XL 

  

Prioritized Combinatorial Interaction Testing 
Problem Definition   Proposal   Results 
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Each Used Coverage (EUC) 
 

 
 
 
Weight Coverage (WC) 
 
 
 

P1 

P2 
P3 

P4 
P5 

P6 

P7 

EUC = 3 / 7 = 0.43 

WC = (0.20+0.25+0.15) / 0.9 = 0.66 

Pair	   Weight	  
P1	   0.20	  
P2	   0.25	  
P3	   0.15	  
P4	   0.10	  
P5	   0.10	  
P6	   0.05	  
P7	   0.05	  
∑ Pi	   0.9	  

Coverage 
Problem Definition   Proposal   Results 
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# Access Method Operation Priv. EUC WC 
1 Browser (with JavaScript) Edit Normal 0.12 0.30 
2 Browser (with JavaScript) Edit Superuser 0.19 0.48 
3 Browser (with JavaScript) Create Normal 0.27 0.60 
4 Native Tool Create Superuser 0.38 0.71 
5 Native Tool Edit Normal 0.50 0.80 
6 Browser (with JavaScript) Delete Normal 0.58 0.88 
7 Native Tool Delete Superuser 0.62 0.92 
8 Browser (no JavaScript) Edit Normal 0.69 0.94 
9 Browser (no JavaScript) Create Superuser 0.77 0.96 

10 Database-Frontend Edit Normal 0.85 0.98 
11 Database-Frontend Create Superuser 0.92 0.99 
12 Browser (no JavaScript) Delete Superuser 0.96 0.99 
13 Database-Frontend Delete Normal 1.00 1.00 

30% weight 
coverage with  
one test case 

With the weight 
coverage we cover 

most important 
interactions of 

components in the 
first test cases 

Coverage: example 
Problem Definition   Proposal   Results 



29  / 53 Cádiz, Spain, July 2nd, 2015 

Introduction Testing Complexity Pairwise Prioritized CIT Test Sequences for 
Functional Testing 

60% weight 
coverage with 

only three 
test cases  

# Access Method Operation Priv. EUC WC 
1 Browser (with JavaScript) Edit Normal 0.12 0.30 
2 Browser (with JavaScript) Edit Superuser 0.19 0.48 
3 Browser (with JavaScript) Create Normal 0.27 0.60 
4 Native Tool Create Superuser 0.38 0.71 
5 Native Tool Edit Normal 0.50 0.80 
6 Browser (with JavaScript) Delete Normal 0.58 0.88 
7 Native Tool Delete Superuser 0.62 0.92 
8 Browser (no JavaScript) Edit Normal 0.69 0.94 
9 Browser (no JavaScript) Create Superuser 0.77 0.96 

10 Database-Frontend Edit Normal 0.85 0.98 
11 Database-Frontend Create Superuser 0.92 0.99 
12 Browser (no JavaScript) Delete Superuser 0.96 0.99 
13 Database-Frontend Delete Normal 1.00 1.00 

With the weight 
coverage we cover 

most important 
interactions of 

components in the 
first test cases 

Coverage: example 
Problem Definition   Proposal   Results 
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92% weight 
coverage with 

just seven 
test cases  

# Access Method Operation Priv. EUC WC 
1 Browser (with JavaScript) Edit Normal 0.12 0.30 
2 Browser (with JavaScript) Edit Superuser 0.19 0.48 
3 Browser (with JavaScript) Create Normal 0.27 0.60 
4 Native Tool Create Superuser 0.38 0.71 
5 Native Tool Edit Normal 0.50 0.80 
6 Browser (with JavaScript) Delete Normal 0.58 0.88 
7 Native Tool Delete Superuser 0.62 0.92 
8 Browser (no JavaScript) Edit Normal 0.69 0.94 
9 Browser (no JavaScript) Create Superuser 0.77 0.96 

10 Database-Frontend Edit Normal 0.85 0.98 
11 Database-Frontend Create Superuser 0.92 0.99 
12 Browser (no JavaScript) Delete Superuser 0.96 0.99 
13 Database-Frontend Delete Normal 1.00 1.00 

The six less 
important test 

cases  just 
suppose 8% 

Coverage: example 
Problem Definition   Proposal   Results 
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GS is a constructive algorithm that reduces the problem step by step 
It constructs the solution by generating the best test datum at a time 
 

Proposal: Genetic Solver 
Problem Definition   Proposal   Results 
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Browser (with JavaScript) Edit Edit Normal 

Browser (with JavaScript) Normal 

Browser (with JavaScript) Edit Normal 

P1 

New Test Datum 

P2 

P3 

P1 

P2 
P3 

P4 
P5 

Pn 
P6 

P7 

P1 

P2 
P3 

P4 
P5 

Pn 
P6 

P7 

P4 
P5 

Pn 
P6 

P7 

Set of ‘Remaining pairs’  New ‘Remaining pairs’  Removing pairs 

WC(RP) = 1 

WC(TD) = 0.3 

WC(RP’) = 0.7 WC(RP) – WC(TD)= WC(RP’) 

Proposal: Genetic Solver 
Problem Definition   Proposal   Results 
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Distribution Description 

D1 (equal weights) All classes have the same weight 

D2 (50/50 split) 
Half of the weight for each classification 
are set to 0.9, the other half to 0.1 

D3 (1/vmax2  split) 

All weights of classes for a classification 
are equal to 1/vmax2, where vmax is the 
number of classes associated with the 
classification. 

D4 (random) Weights are randomly distributed 

Set of benchmarks and distributions proposed by Bryce and Colbourn. 

Scenario # Classes 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 

Results: Experimental Evaluation 
Problem Definition   Proposal   Results 
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We compare 8 scenarios, 4 distributions, and different coverage values 
–  Coverage values: 25%, 50%, 66%, 75%, 90%, 95%, and 99% 

GS is the best in 6 out of 8 scenarios 
GS is the best for all distributions 

Scenario GS PPC PPS 
S1 0 0 12 
S2 8 18 0 
S3 9 3 0 
S4 14 9 1 
S5 13 6 3 
S6 24 1 0 
S7 5 2 0 
S8 19 6 - 

Total 92	   45	   19	  

Distribution	   PPC	   PPS	  
D1-GS	   28↑	   10↓	   29↑	   8↓	  
D2-GS	   26↑	   9↓	   42↑	   3↓	  
D3-GS	   19↑	   10↓	   29↑	   8↓	  
D4-GS	   22↑	   6↓	   41↑	   4↓	  
Total	   95↑	   35↓	   141↑	   23↓	  

Times one algorithm is better 
than the others 

Times a significant difference 
between GS and the others exists 

Results: Comparison with PPC and PPS (B&M) 
Problem Definition   Proposal   Results 
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We compared the algorithm focused on different coverage values 
It is important to obtain the best results for intermediate values of coverage 
The GS always performs better than the others for these coverage values 
 
 

§ PPS § PPC   § GS  

79% 

21% 

0% 

50% Coverage 

72% 

16% 

12% 

75% Coverage 

66% 
14% 

20% 

100 %Coverage 

Results: Comparison with PPC and PPS (B&M) 
Problem Definition   Proposal   Results 



36  / 53 Cádiz, Spain, July 2nd, 2015 

Introduction Testing Complexity Pairwise Prioritized CIT Test Sequences for 
Functional Testing 

Scenario GS DDA BDD 
S1 2 2 2 
S2 11 0 0 
S3 6 1 0 
S4 8 0 2 
S5 7 3 0 
S6 11 0 0 
S7 3 0 1 
S8 3 1 0 

Totals 51	   7	   5	  

Distribution	   DDA	   BDD	  

D1-GS	   7↑	   7↓	   15↑	   5↓	  
D2-GS	   10↑	   1↓	   16↑	   2↓	  
D3-GS	   16↑	   0↓	   18↑	   1↓	  
D4-GS	   16↑	   2↓	   22↑	   1↓	  
Totals	   49↑	   10↓	   71↑	   9↓	  

GS is the best in 7 out of 8 scenarios. It draws on the scenario S1. 

GS is the best in 3 out of 4 distributions. It draws in D1 with DDA. 
 
 

Times one algorithm is better 
than the others 

Times there exist significant 
differences between the algorithms 

Comparison among GS and the state-of-the-art algorithms: 
Deterministic Density Algorithm (DDA): Bryce and Colbourn (2006)          
Binary Decision Diagrams (BDD): Salecker et al. (2011) 

Results: Comparison with DDA and BDD 
Problem Definition   Proposal   Results 
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79% 

7% 14% 

100% Coverage 

§ BDD § DDA   § GS  

50% Coverage 

75% 

21% 

4% 

75% Coverage 

GS always performs better than the state-of-the-art algorithms 
It is always better than the other algorithms for all scenarios and distributions for 50% 
weight coverage. 
 
 
 

Results: Comparison with DDA and BDD 
Problem Definition   Proposal   Results 
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Problem Definition   Proposal   Results 

J. Ferrer et al.,  IST 2015 
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Functional Testing 

•  Standard tests in combinatorial interaction testing: 
independent test cases 

•  Test sequences: SUT (Software Under Test) state is important 

 

Acceleration 
(40 Km/h) 

Turn right and 
accelerate 

(100 Km/h) 

Brake 
(ABS) 

Failure! 

Test Sequences 
Problem Definition   Proposal   Results 
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Introduction Testing Complexity Pairwise Prioritized CIT Test Sequences for 
Functional Testing 

•  Classification Tree Method (CTM): is a model to identify 
states of the software 

•  Extended CTM: add transitions between classes (states): 
similar to a hierarchical concurrent state machine 

Extended Classification Tree Method 
Problem Definition   Proposal   Results 
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•  Test: a set of classes that represents the current state 
of the SUT 

•  Test sequence: a sequence of tests that preserve the 
transition rules 

•  Goal: find a set of test sequences with the minimum 
number of tests to fulfill the coverage criterion 

•  Coverage criteria: 
•  Cover all the classes in the ECTM 
•  Cover all the transitions in the ECTM 

Test Sequence Generation Problem in ECTM 
Problem Definition   Proposal   Results 
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Introduction Testing Complexity Pairwise Prioritized CIT Test Sequences for 
Functional Testing 

•  Class coverage: all classes must appear in the test 
sequence 

 

Coverage Criteria 
Problem Definition   Proposal   Results 
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Introduction Testing Complexity Pairwise Prioritized CIT Test Sequences for 
Functional Testing 

•  Transition coverage: all transitions must be taken in the 
test sequence 

 

Coverage Criteria 
Problem Definition   Proposal   Results 
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Functional Testing 

Algorithms 
•  We developed two algorithms based on Genetic Algorithms and Ant 

Colony Optimization 

•  Integrated in CTE XL Professional 

Problem Definition   Proposal   Results 
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Functional Testing 

•  Solution: a sequence of integers representing the 
outgoing transition of a class 

•  Evaluation: 
•  It starts in the initial state (startingGame, running) 
•  Then, it consumes the transition vector (one number per leaf class) 

 

1 1 1 2 2 5 2 1 3 1 

Algorithms: Genetic Test Sequence Generator 
Problem Definition   Proposal   Results 
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•  No recombination 
•  Mutation: position-based probability in range [m1, m2] 

•  A change in the first positions could be a hard perturbation 
of the solution 

 

1 1 1 2 2 5 2 1 3 1 

m1=0,05 m2=0,25 

Algorithms: Genetic Test Sequence Generator 
Problem Definition   Proposal   Results 
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•  Based on ACOhg (ACO for Huge Graphs) 
•  Two changes over ACOhg: 

•  The goal is to reach maximum coverage, instead of shortest paths 
•  There are no final nodes 

•  Heuristic function: 
•  Designed to guide the search to unexplored regions 

 

Heuristic: 90 

Heuristic: 120 

Algorithms: ACO for Test Sequences 
Problem Definition   Proposal   Results 
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Program	   Classes	   Transitions	   Minimal	   Complete	  
Keyboard	   5	   8	   2	   4	  

Microwave	   19	   23	   7	   56	  

Autoradio	   20	   35	   11	   66	  

Citizen	   62	   74	   31	   3121	  

Coffee Machine 	   21	   28	   9	   81	  

Communication 	   10	   12	   7	   7	  

Elevator 	   13	   18	   5	   80	  

Tetris 	   11	   18	   10	   10	  

Mealy Moore 	   5	   11	   5	   5	  

Fuel Control 	   5	   27	   5	   600	  

Transmission 	   7	   12	   4	   12	  

Aircraft 	   24	   20	   5	   625	  

Experiments: benchmark 
Problem Definition   Proposal   Results 
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Program	   GA	   ACO	   Greedy	  
Keyboard	   2	   2	   2	  
Microwave	   8*	   8*	   9	  
Autoradio	   13,30*	   14	   13*	  
Citizen	   39,47*	   36**	   47	  
Coffee Machine 	   9	   9	   9	  
Communication 	   7	   7	   7	  
Elevator 	   6	   6	   6	  
Tetris 	   12*	   12*	   15	  
Mealy Moore 	   5	   5	   5	  
Fuel Control 	   5	   5	   5	  
Transmission 	   4	   4	   4	  
Aircraft 	   4 (86,20%)	   4 (86,20%)	   4 (86,20%)	  
*Statistically significant difference with the worst algorithm 
**Statistically significant difference with the other algorithms 

Experiments: Results (Class Coverage) 
Problem Definition   Proposal   Results 
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Experiments: Results (Class Coverage) 
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Program	   GA	   ACO	   Greedy	  
Keyboard	   5	   5	   5	  
Microwave	   17	   17	   17	  
Autoradio	   36,30	   36	   36	  
Citizen	   75,27* (99,90%)	   64,17**	   51(92,70%)	  
Coffee Machine 	   19	   19	   18**	  
Communication 	   16*	   16*	   17	  
Elevator 	   9	   9	   9	  
Tetris 	   31	   31	   31	  
Mealy Moore 	   24	   24	   24	  
Fuel Control 	   11*	   11*	   12	  
Transmission 	   9	   9	   9	  
Aircraft 	   7 (2)	   7 (2)	   7 (2)	  

Experiments: Results (Transition Coverage) 

*Statistically significant difference with the worst algorithm 
**Statistically significant difference with the other algorithms 

Problem Definition   Proposal   Results 
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Experiments: Results (Transition Coverage) 
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