Introduction

Pairwise Prioritized CIT

Test Sequences for Functional Testing

Recent Research on Search Based Software Testing: Part 1

LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE MÁLAGA

Francisco Chicano

University of Málaga, Spain (assistant professor) Colorado State University, USA (faculty affiliate)

Search Software Testing SBSE

Optimization Problem

An optimization problem is a pair: **P** = (S,f) where:

- **S** is a set of solutions (solution or search space)
- **f**: $S \rightarrow R$ is an objective function to minimize or maximize

If our goal is to minimize the function we search for:

 $s' \in S \mid f(s') \leq f(s), \forall s \in S$

2015

Search Software Testing SBSE

Multi-Objective Optimization Problem

In a MO problem there are several objectives (functions) we want to optimize

Search Software Testing SBSE

Optimization Techniques

Introduction

Search Software Testing SBSE

Evolutionary Algorithm

Pseudocode of a simple EA

P = generateInitialPopulation ();
evaluate (P);
while not stoppingCondition () do
 P' = selectParents (P);
 P' = applyVariationOpterators (P');
 evaluate(P');
 P = selectNewPopulation (P,P');
end while
return the best solution found

Three main steps: selection, reproduction, replacement Variation operators → Make the population to evolve Recombination: exchange of features Mutation: generation of new features •

Search Software Testing SBSE

Evolutionary Algorithm

Genetic Algorithms

Individuals

Binary Chromosome

- Recombination
 - One point
 - Two points
 - Uniform

• Mutation → bit flips

Search Software Testing SBSE

Ant Colony Optimization

procedure ACOMetaheuristic ScheduleActivities ConstructAntsSolutions UpdatePheromones DaemonActions // optional end ScheduleActivities end procedure

- The ant selects stochastically its next node
- The probability of selecting one node depends on the pheromone trail and the heuristic value (optional) of the edge/node
- The ant stops when a complete solution is built

Cádiz, Spain, July 2nd, 2015

Search Software Testing SBSE

Software Testing: Definition and Goal

- What is software testing?
 - It is the process of running a software product or a portion of it in a controlled environment with a given input followed by the collection and analysis of the output and/or other relevant information of the execution.
- What is the goal of software testing?
 - To find out errors in a portion or the complete software product and/or to assure with a high probability that the software is correct (according to the requirements).

Pairwise Prioritized CIT

Test Sequences for Functional Testing

Search Software Testing SBSE

Software Testing: Impact

Software testing is important because...

Cádiz, Spain, July 2nd, 2015

Search Software Testing SBSE

Software Testing: Classification

- Classification of testing techniques (by goal)
 - Unit testing: test one module of the software.
 - Integration testing: test the interfaces between different modules in the software.
 - System testing: test the complete system.
 - Validation testing: test if the software system fulfills the requirements.
 - Acceptance testing: the client test whether the system is what s/he wants.
 - Regression testing: after a change in the software test whether a new error has been introduced.
 - Stress testing: test the system under a high load
 - Load testing: test the response of the system under a normal load of work.

Search Software Testing SBSE

Software Testing: Automatization

Cádiz, Spain, July 2nd, 2015

Search Software Testing SBSE

Search Based Software Engineering

Search Software Testing SBSE

Our Research on SBSE

- Software Project Scheduling
- Requirements Selection
- Automatic Refactoring
- White-box Software Testing
- Testing of Concurrent Systems (based on Model Checking)
- Testing Complexity
- Prioritized Pairwise Combinatorial Interaction Testing
- Test Sequences for Functional Testing
- Test Suite Minimization in Regression Testing
- Software Product Lines Testing

Testing Complexity

J. Ferrer et al., Inf. & Soft. Tech. 2013

Cádiz, Spain, July 2nd, 2015

How difficult is to test the Software using automatic test data generation?

Can we estimate the difficulty analyzing the program?

This kind of measure would be useful to estimate the testing costs

McCabe's Cyclomatic Complexity

v(G)=E-N+2

One entry and exit node

v(G)=E-N+1

Strongly connected graph

What does it mean?

- Number of linearly independent paths of the graph
- Linearly independent paths find errors with high probability
- The measure is an estimation of the cost of testing the code

Background Proposal Results

Other Measures

- Lines of Code (LOC)
- Source Lines of Code (*SLOC*)
- Lines of Code Equivalent (LOCE)
- Total Number of Disjunctions (*TNDj*)
- Total Number of Conjunctions (*TNCj*)
- Total Number of Equalities (*TNE*)
- Total Number of Inequalities (TNI)
- Total Number of Decisions (*TND*)
- Number of Atomic Conditions per Decision (CpD)
- Nesting Degree (N)
- Halstead's Complexity (HD)
- McCabe's Cyclomatic Complexity (MC)

- Halstead Length (HL): N = N1 + N2
- Halstead Vocabulary (HV): n = n1 + n2
- Halstead Volume (HVL): $V = N * \log_2 n$
- Halstead Difficulty (HD): $HD = \frac{n_1}{2} * \frac{N_2}{n_2}$
- Halstead Level (HLV): $L = \frac{1}{HD}$
- Halstead Effort (HE): E = HD * V
- Halstead Time (HT): $T = \frac{E}{18}$
- Halstead Bugs (HB): $B = \frac{V}{3000}$
- Density of Decisions (DD) = TND/LOC.
- Density of LOCE (DLOCE) = LOCE/LOC.

Legend

- n1 = the number of distinct operators
- n2 = the number of distinct operands
- N1 = the total number of operators
- N2 = the total number of operands

Background Proposal Results

Our Proposal: Branch Coverage Expectation

Background Proposal Results

Our Proposal: Branch Coverage Expectation

Expected BB executions in 1 run

Expected branch execution in 1 run

 $E[BB_i, BB_j] = E[BB_i] * P_{ij}$

$$E[BB_i] = \frac{\pi_i}{\pi_1},$$

Cádiz, Spain, July 2nd, 2015

Background Proposal Results

Our Proposal: Branch Coverage Expectation

Most difficult branches to cover

$$A = \{(i, j) | E[BB_i, BB_j] < \frac{1}{2} \}.$$

Branch Coverage Expectation

$$BCE = \frac{1}{|A|} \sum_{(i,j)\in A} E[BB_i, BB_j].$$

Background Proposal Results

Testing Complexity

Introduction

Correlation Study with All the Measures

Pairwise Prioritized CIT

Table A.10: The correlation coefficients among all the measures analyzed in the benchmark 100%CP HD MC LOCE ES GA RND HD 0.070-0.101 0.077 MC 0.7960.965 | 0.266 | 0.519 |0.408 $0.025 \\ 0.805 \\ 0.962 \\ 0.925 \\ 0.925 \\ 0.934 \\ 0.829 \\ 0.811 \\ 0.985 \\ 0.524 \\ 0.976 \\ 0.969 \\ 0.977 \\ 0.796 \\ 0.977 \\ 0.796 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.954 \\ 0.977 \\ 0.954 \\ 0.95$ -0.150-0.226-0.074 LOCE 0.786 0.965 0.344 | 0.515 |0.474 $+0.038 \\ 0.796 \\ 0.974 \\ 0.884 \\ 0.884 \\ 0.882 \\ 0.822 \\ 0.822 \\ 0.789 \\ 0.976 \\ 0.501 \\ 0.945 \\ 0.938 \\ 0.945 \\ -0.786 \\ 0.921 \\ 0.921 \\ 0.921 \\ 0.921 \\ 0.945 \\ -0.186 \\ -0.251 \\ -0.136 \\ -0.251 \\ -$ -0.540 + 0.207 + 0.180 + 0.235 + 0.240 + 0.311 + 0.234 + 0.276 + 0.136 + 0.138 + 0.127 + 0.139 + 0.108 + 0.089 + 0.089 + 0.139 + 0.543 + 0.381 + 0.434 + 0.208 + 0.138 + 0.208 + 0.138 + 0.208 + 0.2-0.108 0.266 0.344 0.7650.877 $-0.377 \Big| -0.043 \Big| 0.405 \Big| 0.449 \Big| 0.489 \Big| 0.485 \Big| 0.437 \Big| 0.538 \Big| 0.283 \Big| | 0.368 \Big| 0.367 \Big| 0.372 \Big| -0.052 \Big| 0.302 \Big| 0.302 \Big| 0.372 \Big| -0.439 \Big| -0.344 \Big| -0.311 \Big| -0.31$ DD 0.052 0.519 0.515 0.765 -0.912 $\begin{smallmatrix} -0.485 \\ -0.132 \\ 0.307 \\ 0.081 \\ 0.065 \\ 0.008 \\ -0.124 \\ 0.009 \\ -0.124 \\ 0.009 \\ 0.017 \\ 0.078 \\ 0.121 \\ 0.120 \\ 0.121 \\ 0.129 \\ 0.120 \\ 0.258 \\ 0.271 \\ 0.035 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.201 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.208 \\ 0.201 \\ 0.208$ DLOCE-0.035 0.408 0.474 0.877 0.912 -BCE 0.285 0.025 -0.038 -0.540 -0.377 -0.485LOC 0.932 0.805 0.796 -0.207-0.043 -0.132 0.307 0.879 0.753 0.730 0.634 0.646 0.810 0.419 0.891 0.892 0.890 0.932 0.910 0.910 0.890 0.136 - 0.053 0.1200.853 0.962 0.974 0.180 0.405 0.081 | 0.879 $0.884 \\ 0.878 \\ 0.794 \\ 0.778 \\ 0.973 \\ 0.492 \\ 0.975 \\ 0.970 \\ 0.975 \\ 0.975 \\ 0.853 \\ 0.960 \\ 0.960 \\ 0.960 \\ 0.975 \\ 0.975 \\ 0.991 \\ 0.91 \\ 0.091 \\ 0.090 \\ 0.975 \\ 0.970 \\ 0.975$ SLOC 0.336TNDi 0.742 0.925 0.884 0.235 0.449 0.3520.065 0.753 0.884 0.773 0.813 0.719 0.897 0.515 0.919 0.908 0.919 0.742 0.900 0.900 0.919 0.119 0.175 0.036 TNCj 0.731 0.934 0.882 0.240 0.489 0.734 0.806 0.905 0.497 0.913 0.901 0.913 0.731 0.895 0.895 0.913 0.913 0.158 0.235 0.072 0.3800.008 0.730 0.878 0.773 -0.644 0.829 0.822 0.311 0.485 0.618 0.822 0.435 0.798 0.785 0.797 0.644 0.779 0.779 0.797 0.272 0.279 0.279 0.207 TNE 0.410-0.124 0.634 0.794 0.813 0.734 -TNI 0.639 0.811 0.789 0.234 0.437 0.3530.009 0.646 0.778 0.719 0.806 0.618 0.799 0.439 0.794 0.791 0.795 0.639 0.774 0.774 0.795 0.121 0.201 0.095 -TND 0.799 0.985 0.976 0.276 0.538 0.4180.017 0.810 0.973 0.897 0.905 0.822 0.799 -0.503 0.961 0.959 0.962 0.799 0.935 0.935 0.962 0.147 0.226 0.082 CpD 0.454 0.524 0.501 0.136 0.283 0.2170.078 0.419 0.492 0.515 0.497 0.435 0.439 0.503 -||0.524|0.518|0.523||0.454|0.514|0.514|0.523|||0.089||0.132|0.035HL 0.870 0.976 0.945 0.138 0.368 0.121 0.891 0.975 0.919 0.913 0.798 0.794 0.961 0.524 0.991 1.0 -0.870 0.989 0.989 1.0 -0.071 - 0.180 - 0.0120.270 -HV 0.842 0.969 0.938 0.127 0.367 0.129 0.892 0.970 0.908 0.901 0.785 0.791 0.959 0.518 0.991 0.994 0.842 0.971 0.971 0.994 0.061 0.172 0.003 0.258--0.864 0.987 0.987 1.0 HVL 0.864 0.977 0.945 0.139 0.372 0.2710.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 -0.072-0.181-0.011 --1.0 -0.796 -0.786 0.108 -0.052 -0.285 -0.932 -0.853 -0.742 -0.731 -0.644 -0.639 -0.799 -0.454 -0.870 -0.842 -0.864 -0.920 - 0.920 - 0.864-0.070 0.101 -0.077 HLV0.035_ 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 0.920 HE 0.920 0.954 0.921 0.089 0.3020.2081.0 0.987 -0.046-0.168 0.006 -HT 0.920 0.954 0.921 0.089 0.302 0.2080.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 0.920 1.0 0.987 -0.046-0.168 0.006 0.864 0.977 0.945 0.139 0.372 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 1.0 0.864 0.987 0.987 HB 0.271-0.072-0.181-0.011 - $-0.504 \hspace{0.1cm} 0.510 \hspace{0.1cm} 0.136 \hspace{0.1cm} 0.091 \hspace{0.1cm} 0.119 \hspace{0.1cm} 0.0158 \hspace{0.1cm} 0.272 \hspace{0.1cm} 0.121 \hspace{0.1cm} 0.147 \hspace{0.1cm} 0.089 \hspace{0.1cm} 0.071 \hspace{0.1cm} 0.061 \hspace{0.1cm} 0.072 \hspace{0.1cm} 0.070 \hspace{0.1cm} 0.046 \hspace{0.1cm} 0.046 \hspace{0.1cm} 0.072 \hspace{0.072 \hspace{0.1cm} 0.072 \hspace{0.072 \hspace{0.0$ ES 0.070-0.150-0.186-0.543-0.439 - 0.365 0.445 GA -0.101-0.226-0.251-0.381-0.304 $-0.345 \ | 0.375 \ | 0.053 \ | 0.104 \ | 0.175 \ | 0.235 \ | 0.279 \ | 0.201 \ | 0.226 \ | 0.132 \ | 0.180 \ | 0.172 \ | 0.181 \ | 0.101 \ | 0.168 \ | 0.184 \ | 0.181 \ | 0.365 \ | 0.375 \ | 0.3$ 0.403RND 0.077+0.074-0.133+0.434+0.311 -0.397 0.534 0.120+0.050+0.036+0.072+0.207+0.095+0.082 0.035 -0.012+0.003+0.011+0.077 0.006 0.006+0.011 0.445 0.403

Study over 2600 programs

21 / 53

Table A.11: The correlation coefficients among all the measures analyzed in the benchmark $\neg 100\%$ CP

				Tabl		. ine (
	HD		LOCE			DLOCE															HT	HB	ES		RND
HD	-	0.698	0.359	-0.062	0.023	0.014																			
MC	0.698	-	0.571	0.257	0.432	0.351	-0.142	0.472	0.667	0.936	0.937	0.803	0.827	0.718	0.671	0.782	0.762	0.786	-0.698	0.803	0.803	0.786	-0.177	-0.168	-0.173
LOCE	0.359	0.571	-	0.692	0.590	0.833	-0.461	0.414	0.717	0.435	0.432	0.479	0.485	0.814	0.086	0.564	0.503	0.560	-0.359	0.524	0.524	0.560	-0.461	-0.452	-0.476
Ν	-0.062	0.257	0.692	-	0.708	0.870	-0.575	-0.160	0.190	0.163	0.161	0.229	0.220	0.502	-0.031	0.020	0.009	0.019	0.062	-0.007	-0.007	0.019	-0.563	-0.554	-0.589
DD	0.023	0.432	0.590	0.708	-	0.774	-0.426	-0.178	0.280	0.306	0.304	0.385	0.372	0.723	0.026	0.089	0.056	0.087	-0.023	0.070	0.070	0.087	-0.476	-0.473	-0.497
DLOCE	0.014	0.351	0.833	0.870	0.774	-	-0.556	-0.113	0.284	0.247	0.243	0.308	0.291	0.593	0.013	0.096	0.076	0.095	-0.014	0.073	0.073	0.095	-0.577	-0.564	-0.602
BCE	0.051	-0.142	-0.461	-0.575	-0.426	-0.556	-	0.075	-0.143	-0.078	-0.079	-0.200	-0.138	-0.318	0.080	-0.021	-0.006	-0.020	-0.051	0.001	0.001	-0.020	0.714	0.698	0.732
LOC	0.664	0.472	0.414	-0.160	-0.178	-0.113	0.075	-	0.857	0.398	0.397	0.386	0.406	0.494	0.144	0.906	0.821	0.901	-0.664	0.874	0.874	0.901	0.102	0.099	0.116
SLOC	0.648	0.667	0.717	0.190	0.280	0.284	-0.143	0.857	-	0.533	0.532	0.549	0.572	0.834	0.152	0.916	0.813	0.910	-0.648	0.875	0.875	0.910	-0.137	-0.137	-0.137
TNDj	0.653	0.936	0.435	0.163	0.306	0.247	-0.078	0.398	0.533	-	0.849	0.753	0.781	0.555	0.747	0.702	0.697	0.707	-0.653	0.731	0.731	0.707	-0.110	-0.101	-0.102
TNCj	0.651	0.937	0.432	0.161	0.304	0.243	-0.079	0.397	0.532	0.849	-	0.753	0.771	0.551	0.746	0.702	0.697	0.707	-0.651	0.731	0.731	0.707	-0.116	-0.107	-0.111
TNE	0.557	0.803	0.479	0.229	0.385	0.308	-0.200	0.386	0.549	0.753	0.753	-	0.623	0.600	0.544	0.633	0.619	0.636	-0.557	0.646	0.646	0.636	-0.278	-0.270	-0.270
TNI	0.569	0.827	0.485	0.220	0.372	0.291	-0.138	0.406	0.572	0.781	0.771	0.623	-	0.619	0.559	0.658	0.645	0.662	-0.569	0.671	0.671	0.662	-0.207	-0.198	-0.204
TND	0.463	0.718	0.814	0.502	0.723	0.593	-0.318	0.494	0.834	0.555	0.551	0.600	0.619	-	0.132	0.688	0.605	0.683	-0.463	0.648	0.648	0.683	-0.338	-0.336	-0.348
CpD	0.441	0.671	0.086	-0.031	0.026	0.013	0.080	0.144	0.152	0.747	0.746	0.544	0.559	0.132	-	0.394	0.436	0.402	-0.441	0.437	0.437	0.402	0.026	0.026	0.031
HL	0.764	0.782	0.564	0.020	0.089	0.096	-0.021	0.906	0.916	0.702	0.702	0.633	0.658	0.688	0.394	-	0.932	0.999	-0.764	0.980	0.980	0.999	-0.021	-0.018	-0.010
HV	0.576	0.762	0.503	0.009	0.056	0.076	-0.006	0.821	0.813	0.697	0.697	0.619	0.645	0.605	0.436	0.932	-	0.946	-0.576	0.874	0.874	0.946	-0.040	-0.030	-0.022
HVL	0.747	0.786	0.560	0.019	0.087	0.095	-0.020	0.901	0.910	0.707	0.707	0.636	0.662	0.683	0.402	0.999	0.946	-	-0.747	0.974	0.974	1.0	-0.023	-0.020	-0.011
HLV	-1.0	-0.698	-0.359	0.062	-0.023	-0.014	-0.051	-0.664	-0.648	-0.653	-0.651	-0.557	-0.569	-0.463	-0.441	-0.764	-0.576	-0.747	- 1	-0.872	-0.872	-0.747	-0.069	-0.067	-0.079
HE	0.872	0.803	0.524	-0.007	0.070		0.001																		
HT	0.872	0.803	0.524	-0.007	0.070	0.073	0.001	0.874	0.875	0.731	0.731	0.646	0.671	0.648	0.437	0.980	0.874	0.974	-0.872	1.0	-	0.974	0.004	0.005	0.016
HB	0.747	0.786	0.560	0.019	0.087	0.095	-0.020	0.901	0.910	0.707	0.707	0.636	0.662	0.683	0.402	0.999	0.946	1.0	-0.747	0.974	0.974	1.0	-0.023	-0.020	-0.011
ES	0.069	-0.177	-0.461	-0.563	-0.476	-0.577	0.714	0.102	-0.137	-0.110	-0.116	-0.278	-0.207	-0.338	0.026	-0.021	-0.040	-0.023	-0.069	0.004	0.004	-0.023	-	0.954	0.940
GA	0.067	-0.168	-0.452	-0.554	-0.473	-0.564	0.698	0.099	-0.137	-0.101	-0.107	-0.270	-0.198	-0.336	0.026	-0.018	-0.030	-0.020	0.067	0.005	0.005	-0.020	0.954	-	0.950
RND	0.079	-0.173	-0.476	-0.589	-0.497	-0.602	0.732	0.116	-0.137	-0.102	-0.111	-0.270	-0.204	-0.348	0.031	-0.010	-0.022	-0.011	0.079	0.016	0.016	-0.011	0.940	0.950	-

Background Proposal Results

Correlation with Cov. of an Automatic TD Gen.

		100%CP		$\neg 100\%$ CP			
	ES	GA	RND	ES	GA	RND	
MC	-0.150	-0.226	-0.074	-0.177	-0.168	-0.173	
HD	0.070	-0.101	0.077	0.069	0.067	0.079	
LOCE	-0.186	-0.251	-0.133	-0.461	-0.452	-0.476	
N	-0.543	-0.381	-0.434	-0.563	-0.554	-0.589	
DD	-0.439	-0.304	-0.311	-0.476	-0.473	-0.497	
DLOCE	-0.504	-0.345	-0.397	-0.577	-0.564	-0.602	
BCE	0.510	0.375	0.534	0.714	0.698	0.732	

Study over 2600 programs

On real programs the correlation is higher

Cádiz, Spain, July 2nd, 2015

Background Proposal Results

Approximated Behaviour of RND

Prioritized Pairwise Combinatorial Interaction Testing

J. Ferrer et al., GECCO 2012

Cádiz, Spain, July 2nd, 2015

Combinatorial Interaction Testing

The tester identifies the relevant test aspects (*parameters*) and defines corresponding classes (*parameter values*)

A test case is a set of *n* values, one for each parameter

A kind of functional (black-box) testing

Prioritized Combinatorial Interaction Testing

- The coverage criterion will determine the degree of parameter interaction
- The coverage criterion is defined by its strength *t* (*t*-wise)
- In prioritized CIT, each t-tuple has a weight that measures the importance
- **Tool Support: CTE XL**

Spanish Software Testing Qualifications Board

Coverage

Each Used Coverage (EUC)

 $EUC = \frac{number of \ covered \ class \ pairs}{number of \ coverable \ class \ pairs}$

EUC = 3 / 7 = 0.43

Weight Coverage (WC)

 $WC = \frac{sum of \ weights \ of \ covered \ class \ pairs}{sum of \ weights \ of \ all \ coverable \ class \ pairs}$

WC = (0.20 + 0.25 + 0.15) / 0.9 = 0.66

Coverage: example

#	Access Method	Operation	Priv.	EUC	WC
1	Browser (with JavaScript)	Edit	Normal	0.12	0.30
2	Browser (with JavaScript)	Edit	Superuser	0.19	0.48
3	Browser (with JavaScript)	Create	Normal	0.27	0.60
4	Native Tool	Create	Superuser	0.38	0.71
5	Native Tool	Edit	Normal	0.50	0.80
6	Browser (with JavaScript)	Delete	Normal	0.58	0.88
7	Native Tool	Delete	Superuser	0.62	0.92
8	Browser (no JavaScript)	Edit	Normal	0.69	0.94
9	Browser (no JavaScript)	Create	Superuser	0.77	0.96
10	Database-Frontend	Edit	Normal	0.85	0.98
11	Database-Frontend	Create	Superuser	0.92	0.99
12	Browser (no JavaScript)	Delete	Superuser	0.96	0.99
13	Database-Frontend	Delete	Normal	1.00	1.00

30% weight coverage with one test case

With the weight coverage we cover most important interactions of components in the first test cases

Problem Definition Proposal Results

Coverage: example

#	Access Method	Operation	Priv.	EUC	WC
1	Browser (with JavaScript)	Edit	Normal	0.12	0.30
2	Browser (with JavaScript)	Edit	Superuser	0.19	0.48
3	Browser (with JavaScript)	Create	Normal	0.27	0.60
4	Native Tool	Create	Superuser	0.38	0.71
5	Native Tool	Edit	Normal	0.50	0.80
6	Browser (with JavaScript)	Delete	Normal	0.58	0.88
7	Native Tool	Delete	Superuser	0.62	0.92
8	Browser (no JavaScript)	Edit	Normal	0.69	0.94
9	Browser (no JavaScript)	Create	Superuser	0.77	0.96
10	Database-Frontend	Edit	Normal	0.85	0.98
11	Database-Frontend	Create	Superuser	0.92	0.99
12	Browser (no JavaScript)	Delete	Superuser	0.96	0.99
13	Database-Frontend	Delete	Normal	1.00	1.00

60% weight coverage with only three test cases

With the weight coverage we cover most important interactions of components in the first test cases

Problem Definition Proposal Results

Coverage: example

#	Access Method	Operation	Priv.	EUC	WC
1	Browser (with JavaScript)	Edit	Normal	0.12	0.30
2	Browser (with JavaScript)	Edit	Superuser	0.19	0.48
3	Browser (with JavaScript)	Create	Normal	0.27	0.60
4	Native Tool	Create	Superuser	0.38	0.71
5	Native Tool	Edit	Normal	0.50	0.80
6	Browser (with JavaScript)	Delete	Normal	0.58	0.88
7	Native Tool	Delete	Superuser	0.62	0.92
3	Browser (no JavaScript)	Edit	Normal	0.69	0.94
9	Browser (no JavaScript)	Create	Superuser	0.77	0.96
0	Database-Frontend	Edit	Normal	0.85	0.98
11	Database-Frontend	Create	Superuser	0.92	0.99
12	Browser (no JavaScript)	Delete	Superuser	0.96	0.99
13	Database-Frontend	Delete	Normal	1.00	1.00

Problem Definition Proposal Results

Proposal: Genetic Solver

GS is a constructive algorithm that reduces the problem step by step It constructs the solution by generating the best test datum at a time

Proposal: Genetic Solver

Results: Experimental Evaluation

Set of benchmarks and distributions proposed by Bryce and Colbourn.

Scenario	# Classes	Distribution	Description		
S1	3 ⁴	D1 (equal weights)	All classes have the same weight		
S2	10 ²⁰		Half of the weight for each classification		
S3	3 ¹⁰⁰	D2 (50/50 split)	are set to 0.9, the other half to 0.1		
S4	$10^19^1 \ 8^17^16^15^1 \ 4^13^12^1$		All weights of classes for a classification		
S5	8 ² 7 ² 6 ² 2 ⁴	D3 (1/vmax ² split)	are equal to 1/ <i>vmax</i> ² , where <i>vmax</i> is the number of classes associated with the		
S6	15 ¹ 10 ⁵ 5 ¹ 4 ¹		classification.		
S7	3 ⁵⁰ 2 ⁵⁰		Waights are randomly distributed		
S8	20 ² 10 ² 3 ¹⁰⁰	D4 (random)	Weights are randomly distributed		

Results: Comparison with PPC and PPS (B&M)

We compare 8 scenarios, 4 distributions, and different coverage values

- Coverage values: 25%, 50%, 66%, 75%, 90%, 95%, and 99%
- GS is the best in 6 out of 8 scenarios
- GS is the best for all distributions

Times one algorithm is better than the others

Scenario	GS	PPC	PPS
S1	0	0	12
S2	8	18	0
S3	9	3	0
S4	14	9	1
S5	13	6	3
S6	24	1	0
S7	5	2	0
S8	19	6	-
Total	92	45	19

Times a significant difference between GS and the others exists

Distribution	PF	ъС	PPS		
D1-GS	2 8↑	10↓	2 9↑	8↓	
D2-GS	26↑	9↓	42↑	3↓	
D3-GS	19↑	10↓	2 9↑	8↓	
D4-GS	22 ↑	6↓	41↑	4↓	
Total	95 ↑	35↓	141 ↑	23 ↓	

Results: Comparison with PPC and PPS (B&M)

We compared the algorithm focused on different coverage values It is important to obtain the best results for intermediate values of coverage The GS always performs better than the others for these coverage values

Results: Comparison with DDA and BDD

Comparison among GS and the state-of-the-art algorithms:

Deterministic Density Algorithm (DDA): Bryce and Colbourn (2006)

Binary Decision Diagrams (BDD): Salecker et al. (2011)

GS is the best in 7 out of 8 scenarios. It draws on the scenario S1.

GS is the best in 3 out of 4 distributions. It draws in D1 with DDA.

Times one algorithm is better than the others										
Scenario GS DDA BDD										
S1	2	2	2							
S2	11	0	0							
S3	6	1	0							
S4	8	0	2							
S5	7	3	0							
S6	11	0	0							
S7	3	0	1							
S8	3	1	0							
Totals	51	7	5							

Times there exist significant differences between the algorithms

Distribution	DI	DA	BDD		
D1-GS	7↑	7↓	15↑	5↓	
D2-GS	10↑	1↓	16↑	2↓	
D3-GS	16↑	0↓	18↑	1↓	
D4-GS	16↑	2↓	22 ↑	1↓	
Totals	49 ↑	10 ↓	71 ↑	9↓	

Results: Comparison with DDA and BDD

GS always performs better than the state-of-the-art algorithms It is always better than the other algorithms for all scenarios and distributions for 50% weight coverage.

Test Sequences for Functional Testing

Problem Definition Proposal Results

Test Sequence Generation in Functional Testing

J. Ferrer et al., IST 2015

- Standard tests in combinatorial interaction testing: independent test cases
- Test sequences: SUT (Software Under Test) state is important

Pairwise Prioritized CIT

Test Sequences for Functional Testing

Problem Definition Proposal Results

Extended Classification Tree Method

- Classification Tree Method (CTM): is a model to identify states of the software
- Extended CTM: add transitions between classes (states): similar to a hierarchical concurrent state machine

Problem Definition Proposal Results

Test Sequence Generation Problem in ECTM

- Test: a set of classes that represents the current state of the SUT
- Test sequence: a sequence of tests that preserve the transition rules
- Goal: find a set of test sequences with the minimum number of tests to fulfill the coverage criterion
- Coverage criteria:
 - Cover all the classes in the ECTM
 - Cover all the transitions in the ECTM

 Class coverage: all classes must appear in the test sequence

Transition coverage: all transitions must be taken in the test sequence

Problem Definition Proposal Results

Algorithms

- We developed two algorithms based on Genetic Algorithms and Ant Colony Optimization
- Integrated in CTE XL Professional

Pairwise Prioritized CIT

Test Sequences for Functional Testing

Problem Definition Proposal Results

Algorithms: Genetic Test Sequence Generator

 Solution: a sequence of integers representing the outgoing transition of a class

- Evaluation:
 - It starts in the initial state (*startingGame*, *running*)
 - Then, it consumes the transition vector (one number per leaf class)

Algorithms: Genetic Test Sequence Generator

- No recombination
- Mutation: position-based probability in range [m1, m2]

 A change in the first positions could be a hard perturbation of the solution

Problem Definition Proposal Results

Algorithms: ACO for Test Sequences

- Based on ACOhg (ACO for Huge Graphs)
- Two changes over ACOhg:
 - The goal is to reach maximum coverage, instead of shortest paths
 - There are no final nodes
- Heuristic function: •
 - Designed to guide the search to unexplored regions

Experiments: benchmark

Program	Classes	Transitions	Minimal	Complete
Keyboard	5	8	2	4
Microwave	19	23	7	56
Autoradio	20	35	11	66
Citizen	62	74	31	3121
Coffee Machine	21	28	9	81
Communication	10	12	7	7
Elevator	13	18	5	80
Tetris	11	18	10	10
Mealy Moore	5	11	5	5
Fuel Control	5	27	5	600
Transmission	7	12	4	12
Aircraft	24	20	5	625

Test Sequences for Functional Testing

Problem Definition Proposal Results

Experiments: Results (Class Coverage)

Program	GA	ACO	Greedy
Keyboard	2	2	2
Microwave	8*	8*	9
Autoradio	13,30*	14	13*
Citizen	39,47*	36**	47
Coffee Machine	9	9	9
Communication	7	7	7
Elevator	6	6	6
Tetris	12*	12*	15
Mealy Moore	5	5	5
Fuel Control	5	5	5
Transmission	4	4	4
Aircraft	4 (86,20%)	4 (86,20%)	4 (86,20%)

*Statistically significant difference with the worst algorithm **Statistically significant difference with the other algorithms

Test Sequences for Functional Testing

Problem Definition Proposal Results

Experiments: Results (Transition Coverage)

Program	GA	ACO	Greedy
Keyboard	5	5	5
Microwave	17	17	17
Autoradio	36,30	36	36
Citizen	75,27* (99,90%)	64,17**	51(92,70%)
Coffee Machine	19	19	18**
Communication	16*	16*	17
Elevator	9	9	9
Tetris	31	31	31
Mealy Moore	24	24	24
Fuel Control	11*	11*	12
Transmission	9	9	9
Aircraft	7 (2)	7 (2)	7 (2)

*Statistically significant difference with the worst algorithm **Statistically significant difference with the other algorithms

Test Sequences for Functional Testing

Problem Definition Proposal Results

