
1 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Recent Research on
Search Based Software Testing: Part 2

Francisco Chicano

University of Málaga, Spain (assistant professor)

Colorado State University, USA (faculty affiliate)

2 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

F. Arito et al., SSBSE 2012

3 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Test Suite Minimization
Given:

Ø  A set of test cases T = {t1, t2, ..., tn}

Ø  A set of program elements to be covered (e.g., branches) E= {e1, e2, ..., ek}

Ø  A coverage matrix

Find a subset of tests X ⊆ T maximizing coverage and minimizing the testing cost

3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. One problem related to regression testing is the
Test Suite Minimization Problem (TSMP). This problem is equivalent to the
Minimal Hitting Set Problem which is NP-hard [17]. Let T = {t1, t2, · · · , tn}
be a set of tests for a program where the cost of running test ti is ci and let
E = {e1, e2, · · · , em} be a set of elements of the program that we want to cover
with the tests. After running all the tests T we find that each test can cover
several program elements. This information is stored in a matrix M = [mij] of
dimension n⇥m that is defined as:

mij =

(
1 if element ej is covered by test ti
0 otherwise

The single-objective version of this problem consists in finding a subset of
tests X ✓ T with minimum cost covering all the program elements. In formal
terms:

minimize cost(X) =
nX

i=1
ti2X

ci (2)

subject to:

8ej 2 E , 9ti 2 X such that element ej is covered by test ti, that is, mij = 1.

The multi-objective version of the TSMP does not impose the constraint of
full coverage, but it defines the coverage as the second objective to optimize,
leading to a bi-objective problem. In short, the bi-objective TSMP consists in
finding a subset of tests X ✓ T having minimum cost and maximum coverage.
Formally:

minimize cost(X) =
nX

i=1
ti2X

ci (3)

maximize cov(X) = |{ej 2 E|9ti 2 X with mij = 1}| (4)

There is no constraint in this bi-objective formulation. We should notice here
that solving the bi-objective version (2-obj in short) of TSMP implies solving
the single-objective version (1-obj). In e↵ect, let us suppose that we solve an
instance of the 2-obj TSMP, then a solution for the related 1-obj TSMP is just
the set X ✓ T with cov(X) = |E| in the Pareto optimal set, if such a solution
exists. If there is no solution of 2-obj TSMP with cov(X) = |E|, then the related
1-obj TSMP is not solvable.

e1 e2 e3 ... ek
t1 1 0 1 … 1

t2 0 0 1 … 0

… … … … … …

tn 1 1 0 … 0

M=

3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. One problem related to regression testing is the
Test Suite Minimization Problem (TSMP). This problem is equivalent to the
Minimal Hitting Set Problem which is NP-hard [17]. Let T = {t1, t2, · · · , tn}
be a set of tests for a program where the cost of running test ti is ci and let
E = {e1, e2, · · · , em} be a set of elements of the program that we want to cover
with the tests. After running all the tests T we find that each test can cover
several program elements. This information is stored in a matrix M = [mij] of
dimension n⇥m that is defined as:

mij =

(
1 if element ej is covered by test ti
0 otherwise

The single-objective version of this problem consists in finding a subset of
tests X ✓ T with minimum cost covering all the program elements. In formal
terms:

minimize cost(X) =
nX

i=1
ti2X

ci (2)

subject to:

8ej 2 E , 9ti 2 X such that element ej is covered by test ti, that is, mij = 1.

The multi-objective version of the TSMP does not impose the constraint of
full coverage, but it defines the coverage as the second objective to optimize,
leading to a bi-objective problem. In short, the bi-objective TSMP consists in
finding a subset of tests X ✓ T having minimum cost and maximum coverage.
Formally:

minimize cost(X) =
nX

i=1
ti2X

ci (3)

maximize cov(X) = |{ej 2 E|9ti 2 X with mij = 1}| (4)

There is no constraint in this bi-objective formulation. We should notice here
that solving the bi-objective version (2-obj in short) of TSMP implies solving
the single-objective version (1-obj). In e↵ect, let us suppose that we solve an
instance of the 2-obj TSMP, then a solution for the related 1-obj TSMP is just
the set X ✓ T with cov(X) = |E| in the Pareto optimal set, if such a solution
exists. If there is no solution of 2-obj TSMP with cov(X) = |E|, then the related
1-obj TSMP is not solvable.

Yoo & Harman

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

4 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

NP-hard Problems
In many papers we can read…

“Our optimization problem is NP-hard, and for this reason we use…

… which do not ensure an optimal solution but they are able to find
good solutions in a reasonable time.”

•  Metaheuristic techniques

•  Heuristic algorithms

•  Stochastic algorithms

As far as we know: no efficient (polynomial time) algorithm exists for solving
NP-hard problems

But we know “inefficient” algorithms (exponential time in the worst case)

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

5 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

The SATisfiability Problem
Can we find an assignment of boolean values (true and false) to the variables
such that all the formulas are satisfied?

The first NP-complete problem (Stephen Cook, 1971)

If it can be solved efficiently (polynomial time) then P=NP

The known algorithms solve this problem in exponential time (worst case)

Nowadays, SAT solvers can solve instances with 500 000 boolean variables

This means a search space of 2500 000 ≈ 10150514

State-of-the-art algorithms in SAT

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

6 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

The SATisfiability Problem

My favourite
problem

SAT
instance

Use SAT
solvers

Optimal
solution

Main research question:

Can we use the advances of SAT solvers to
solve optimization algorithms up to optimality?

Test Suite
Minimization

Translation to SAT

Algorithms

MiniSAT+ Experimental
Results

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

7 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Outline

Original
TSM

Instance
PB

Constraints
SAT

Instance

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

8 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Pseudo-Boolean Constraints
A Pseudo-Boolean (PB) constraint has the form:

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

where

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

Can be translated to SAT instances (usually efficient)

Are a higher level formalism to specify a decision problem

Can be the input for MiniSAT+

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

9 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Translating Optimization to Decision Problems
Let us assume we want to minimize f(x)

B

f(x)  B

1

Check

B B B

f(x)  B

1

Check

f(x)  B

1

Check

f(x)  B

1

Check

no no no yes

Optimal solution found

The same can be done with multi-objective problems, but we need more
PB constraints

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

let us suppose without loss of generality that we want to find a solution x⇤ 2 X
that minimizes3 f , that is, f(x⇤)  f(x) for all the solutions x 2 X. This opti-
mization problem can be transformed in a series of decision problems in which
the objective is to find a solution y 2 X for which the constraint f(y)  B holds,
where B 2 Z takes di↵erent integer values. This series of decision problems can
be used to find the optimal (minimal) solution of the optimization problem. The
procedure could be as follows. We start with a value of B low enough for the
constraint to be unsatisfiabe. We solve the decision problem to check that it is
unsatisfiable. Then, we enter a loop in which the value of B is increased and the
constraint is checked again. The loop is repeated until the result is satisfiable.
Once the loop finishes, the value of B is the minimal value of f in the search
space and the solution to the decision problem is an optimal solution of the
optimization problem.

If the optimization problem has several objective functions f1, f2, . . . , fm to
minimize, we need one constraint for each objective function:

f1(y)  B1

f2(y)  B2

...
fm(y)  Bm

In order to use SAT solvers to solve optimization problems, we still need
to translate the constraints f(y)  B to Boolean formulas. To this aim the
concept of Pseudo-Boolean constraint plays a main role. A Pseudo-Boolean (PB)
constraint is an inequality on a linear combination of Boolean variables:

nX

i=1

aixi �B (1)

where � 2 {<,,=, 6=, >,�}, ai, B 2 Z, and xi 2 {0, 1}. A PB constraint is said
to be satisfied under an assignment if the sum of the coe�cients ai for which
xi = 1 satisfies the relational operator � with respect to B.

PB constraints can be translated into SAT instances. The simplest approaches
translate the PB constraint to an equivalent Boolean formula with the same
variables. The main drawback of these approaches is that the number of clauses
generated grows exponentially with respect to the variables. In practice, it is
common to use one of the following methods for the translation: network of
adders, binary decision diagrams and network of sorters [1] (chapter 22). All of
these approaches introduce additional variables to generate a formula which is
semantically equivalent to the original PB constraint. Although the translation
of a non-trivial PB constraint to a set of clauses with some of these methods have
also an exponential complexity in the worst case, in practice it is not common to
have exponential complexity [3] and the translation can be done in a reasonable
time.
3 If the optimization problem consists in maximizing f , we can formulate the problem
as the minimization of �f .

…

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

10 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

PB Constraints for the TSM Problem
e1 e2 e3 ... em

t1 1 0 1 … 1

t2 0 0 1 … 0

… … … … … …

tn 1 1 0 … 0

M=

3 Test Suite Minimization Problem

When a piece of software is modified, the new software is tested using some
previous test cases in order to check if new errors were introduced. This check
is known as regression testing. One problem related to regression testing is the
Test Suite Minimization Problem (TSMP). This problem is equivalent to the
Minimal Hitting Set Problem which is NP-hard [17]. Let T = {t1, t2, · · · , tn}
be a set of tests for a program where the cost of running test ti is ci and let
E = {e1, e2, · · · , em} be a set of elements of the program that we want to cover
with the tests. After running all the tests T we find that each test can cover
several program elements. This information is stored in a matrix M = [mij] of
dimension n⇥m that is defined as:

mij =

(
1 if element ej is covered by test ti
0 otherwise

The single-objective version of this problem consists in finding a subset of
tests X ✓ T with minimum cost covering all the program elements. In formal
terms:

minimize cost(X) =
nX

i=1
ti2X

ci (2)

subject to:

8ej 2 E , 9ti 2 X such that element ej is covered by test ti, that is, mij = 1.

The multi-objective version of the TSMP does not impose the constraint of
full coverage, but it defines the coverage as the second objective to optimize,
leading to a bi-objective problem. In short, the bi-objective TSMP consists in
finding a subset of tests X ✓ T having minimum cost and maximum coverage.
Formally:

minimize cost(X) =
nX

i=1
ti2X

ci (3)

maximize cov(X) = |{ej 2 E|9ti 2 X with mij = 1}| (4)

There is no constraint in this bi-objective formulation. We should notice here
that solving the bi-objective version (2-obj in short) of TSMP implies solving
the single-objective version (1-obj). In e↵ect, let us suppose that we solve an
instance of the 2-obj TSMP, then a solution for the related 1-obj TSMP is just
the set X ✓ T with cov(X) = |E| in the Pareto optimal set, if such a solution
exists. If there is no solution of 2-obj TSMP with cov(X) = |E|, then the related
1-obj TSMP is not solvable.

4 Solving TSMP Instances using PB Constraints

In this section, we will present the proposed approach for solving the TSMP using
SAT solvers. First, we detail how the two versions of TSMP can be translated
into a set of PB constraints and then we present the algorithms used to solve
both versions of TSMP with the help of the SAT solvers.

4.1 Translating the TSMP

The single-objective formulation of TSMP is a particular case of the bi-objective
formulation. Then, we can translate the 2-obj TSMP into a set of PB constraints
and then infer the translation of the 1-obj TSMP as a especial case.

Let us introduce n binary variables ti 2 {0, 1}: one for each test case in T . If
ti = 1 then the corresponding test case is included in the solution and if ti = 0
the test case is not included. We also introduce m binary variables ej 2 {0, 1}:
one for each program element to cover. If ej = 1 then the corresponding element
is covered by one of the selected test cases and if ej = 0 the element is not
covered by a selected test case.

The values of the ej variables are not independent of the ti variables. A given
variable ej must be 1 if and only if there exists a ti variable for which mij = 1
and ti = 1. The dependence between both sets of variables can be written with
the following 2m PB constraints:

ej 
nX

i=1

mijti  n · ej 1  j  m. (5)

We can see that if the sum in the middle is zero (no test is covering the
element ej) then the variable ej = 0. However, if the sum is greater than zero
ej = 1. Now we need to introduce a constraint related to each objective function
in order to transform the optimization problem in a decision problem, as we
described in Section 2.2. These constraints are:

nX

i=1

citi  B, (6)

mX

j=1

ej � P, (7)

whereB 2 Z is the maximum allowed cost and P 2 {0, 1, . . . ,m}, is the minimum
coverage level. We required a total of n + m binary variables and 2m + 2 PB
constraints for the 2-obj TSMP.

For the 1-obj TSMP the formulation is simpler. This is a especial case of the
2-obj formulation in which P = m. If we include this new constraint in (7) we
have ej = 1 for all 1  j  m. Then we don’t need the ej variables anymore
because they are constants. Including these constants in (5) we have:

1 
nX

i=1

mijti  n 1  j  m, (8)

4 Solving TSMP Instances using PB Constraints

In this section, we will present the proposed approach for solving the TSMP using
SAT solvers. First, we detail how the two versions of TSMP can be translated
into a set of PB constraints and then we present the algorithms used to solve
both versions of TSMP with the help of the SAT solvers.

4.1 Translating the TSMP

The single-objective formulation of TSMP is a particular case of the bi-objective
formulation. Then, we can translate the 2-obj TSMP into a set of PB constraints
and then infer the translation of the 1-obj TSMP as a especial case.

Let us introduce n binary variables ti 2 {0, 1}: one for each test case in T . If
ti = 1 then the corresponding test case is included in the solution and if ti = 0
the test case is not included. We also introduce m binary variables ej 2 {0, 1}:
one for each program element to cover. If ej = 1 then the corresponding element
is covered by one of the selected test cases and if ej = 0 the element is not
covered by a selected test case.

The values of the ej variables are not independent of the ti variables. A given
variable ej must be 1 if and only if there exists a ti variable for which mij = 1
and ti = 1. The dependence between both sets of variables can be written with
the following 2m PB constraints:

ej 
nX

i=1

mijti  n · ej 1  j  m. (5)

We can see that if the sum in the middle is zero (no test is covering the
element ej) then the variable ej = 0. However, if the sum is greater than zero
ej = 1. Now we need to introduce a constraint related to each objective function
in order to transform the optimization problem in a decision problem, as we
described in Section 2.2. These constraints are:

nX

i=1

citi  B, (6)

mX

j=1

ej � P, (7)

whereB 2 Z is the maximum allowed cost and P 2 {0, 1, . . . ,m}, is the minimum
coverage level. We required a total of n + m binary variables and 2m + 2 PB
constraints for the 2-obj TSMP.

For the 1-obj TSMP the formulation is simpler. This is a especial case of the
2-obj formulation in which P = m. If we include this new constraint in (7) we
have ej = 1 for all 1  j  m. Then we don’t need the ej variables anymore
because they are constants. Including these constants in (5) we have:

1 
nX

i=1

mijti  n 1  j  m, (8)

4 Solving TSMP Instances using PB Constraints

In this section, we will present the proposed approach for solving the TSMP using
SAT solvers. First, we detail how the two versions of TSMP can be translated
into a set of PB constraints and then we present the algorithms used to solve
both versions of TSMP with the help of the SAT solvers.

4.1 Translating the TSMP

The single-objective formulation of TSMP is a particular case of the bi-objective
formulation. Then, we can translate the 2-obj TSMP into a set of PB constraints
and then infer the translation of the 1-obj TSMP as a especial case.

Let us introduce n binary variables ti 2 {0, 1}: one for each test case in T . If
ti = 1 then the corresponding test case is included in the solution and if ti = 0
the test case is not included. We also introduce m binary variables ej 2 {0, 1}:
one for each program element to cover. If ej = 1 then the corresponding element
is covered by one of the selected test cases and if ej = 0 the element is not
covered by a selected test case.

The values of the ej variables are not independent of the ti variables. A given
variable ej must be 1 if and only if there exists a ti variable for which mij = 1
and ti = 1. The dependence between both sets of variables can be written with
the following 2m PB constraints:

ej 
nX

i=1

mijti  n · ej 1  j  m. (5)

We can see that if the sum in the middle is zero (no test is covering the
element ej) then the variable ej = 0. However, if the sum is greater than zero
ej = 1. Now we need to introduce a constraint related to each objective function
in order to transform the optimization problem in a decision problem, as we
described in Section 2.2. These constraints are:

nX

i=1

citi  B, (6)

mX

j=1

ej � P, (7)

whereB 2 Z is the maximum allowed cost and P 2 {0, 1, . . . ,m}, is the minimum
coverage level. We required a total of n + m binary variables and 2m + 2 PB
constraints for the 2-obj TSMP.

For the 1-obj TSMP the formulation is simpler. This is a especial case of the
2-obj formulation in which P = m. If we include this new constraint in (7) we
have ej = 1 for all 1  j  m. Then we don’t need the ej variables anymore
because they are constants. Including these constants in (5) we have:

1 
nX

i=1

mijti  n 1  j  m, (8)

Cost Coverage

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

11 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Example

which is equivalent to:

nX

i=1

mijti � 1 1  j  m, (9)

since the sum is always less than or equal to n. Thus, for the 1-obj TSMP the
PB constraints are (8) and (9).

4.2 Translation example

In this section we show through a small example how to model with PB con-
straints an instance of the TSMP according to the methodology above described.
Let T = {t1, t2, t3, t4, t5, t6}, E = {e1, e2, e3, e4} and M:

e1 e2 e3 e4
t1 1 0 1 0
t2 1 1 0 0
t3 0 0 1 0
t4 1 0 0 0
t5 1 0 0 1
t6 0 1 1 0

If we want to solve the 2-obj TSMP we need to instantiate Eqs. (5), (6) and
(7). The result is:

e1  t1 + t2 + t4 + t5  4e1 (10)

e2  t2 + t6  4e2 (11)

e3  t1 + t3 + t6  4e3 (12)

e4  t5  4e4 (13)

t1 + t2 + t3 + t4 + t5 + t6  B (14)

e1 + e2 + e3 + e4 � P (15)

where P,B 2 N.
If we are otherwise interested in the 1-obj version the formulation is simpler:

t1 + t2 + t4 + t5 � 1 (16)

t2 + t6 � 1 (17)

t1 + t3 + t6 � 1 (18)

t5 � 1 (19)

t1 + t2 + t3 + t4 + t5 + t6  B (20)

which is equivalent to:

nX

i=1

mijti � 1 1  j  m, (9)

since the sum is always less than or equal to n. Thus, for the 1-obj TSMP the
PB constraints are (8) and (9).

4.2 Translation example

In this section we show through a small example how to model with PB con-
straints an instance of the TSMP according to the methodology above described.
Let T = {t1, t2, t3, t4, t5, t6}, E = {e1, e2, e3, e4} and M:

e1 e2 e3 e4
t1 1 0 1 0
t2 1 1 0 0
t3 0 0 1 0
t4 1 0 0 0
t5 1 0 0 1
t6 0 1 1 0

If we want to solve the 2-obj TSMP we need to instantiate Eqs. (5), (6) and
(7). The result is:

e1  t1 + t2 + t4 + t5  4e1 (10)

e2  t2 + t6  4e2 (11)

e3  t1 + t3 + t6  4e3 (12)

e4  t5  4e4 (13)

t1 + t2 + t3 + t4 + t5 + t6  B (14)

e1 + e2 + e3 + e4 � P (15)

where P,B 2 N.
If we are otherwise interested in the 1-obj version the formulation is simpler:

t1 + t2 + t4 + t5 � 1 (16)

t2 + t6 � 1 (17)

t1 + t3 + t6 � 1 (18)

t5 � 1 (19)

t1 + t2 + t3 + t4 + t5 + t6  B (20)

which is equivalent to:

nX

i=1

mijti � 1 1  j  m, (9)

since the sum is always less than or equal to n. Thus, for the 1-obj TSMP the
PB constraints are (8) and (9).

4.2 Translation example

In this section we show through a small example how to model with PB con-
straints an instance of the TSMP according to the methodology above described.
Let T = {t1, t2, t3, t4, t5, t6}, E = {e1, e2, e3, e4} and M:

e1 e2 e3 e4
t1 1 0 1 0
t2 1 1 0 0
t3 0 0 1 0
t4 1 0 0 0
t5 1 0 0 1
t6 0 1 1 0

If we want to solve the 2-obj TSMP we need to instantiate Eqs. (5), (6) and
(7). The result is:

e1  t1 + t2 + t4 + t5  4e1 (10)

e2  t2 + t6  4e2 (11)

e3  t1 + t3 + t6  4e3 (12)

e4  t5  4e4 (13)

t1 + t2 + t3 + t4 + t5 + t6  B (14)

e1 + e2 + e3 + e4 � P (15)

where P,B 2 N.
If we are otherwise interested in the 1-obj version the formulation is simpler:

t1 + t2 + t4 + t5 � 1 (16)

t2 + t6 � 1 (17)

t1 + t3 + t6 � 1 (18)

t5 � 1 (19)

t1 + t2 + t3 + t4 + t5 + t6  B (20)

which is equivalent to:

nX

i=1

mijti � 1 1  j  m, (9)

since the sum is always less than or equal to n. Thus, for the 1-obj TSMP the
PB constraints are (8) and (9).

4.2 Translation example

In this section we show through a small example how to model with PB con-
straints an instance of the TSMP according to the methodology above described.
Let T = {t1, t2, t3, t4, t5, t6}, E = {e1, e2, e3, e4} and M:

e1 e2 e3 e4
t1 1 0 1 0
t2 1 1 0 0
t3 0 0 1 0
t4 1 0 0 0
t5 1 0 0 1
t6 0 1 1 0

If we want to solve the 2-obj TSMP we need to instantiate Eqs. (5), (6) and
(7). The result is:

e1  t1 + t2 + t4 + t5  4e1 (10)

e2  t2 + t6  4e2 (11)

e3  t1 + t3 + t6  4e3 (12)

e4  t5  4e4 (13)

t1 + t2 + t3 + t4 + t5 + t6  B (14)

e1 + e2 + e3 + e4 � P (15)

where P,B 2 N.
If we are otherwise interested in the 1-obj version the formulation is simpler:

t1 + t2 + t4 + t5 � 1 (16)

t2 + t6 � 1 (17)

t1 + t3 + t6 � 1 (18)

t5 � 1 (19)

t1 + t2 + t3 + t4 + t5 + t6  B (20)

Bi-objective problem

Single-objective problem
(total coverage)

f(x)  B

e1  t1 + t2 + t4 + t5  6e1 (1)

e2  t2 + t6  6e2 (2)

e3  t1 + t3 + t6  6e3 (3)

e4  t5  6e4 (4)

1

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

12 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Algorithm for Solving the 2-obj TSM

Cost

C
ov

er
ag

e

Total coverage
With coverage=|E| increase cost until success

Decrease cost and find
the maximum coverage

again

and again

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

13 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

 Instances from the Software-artifact Infrastructure Repository (SIR)

TSM Instances

The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover
printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is

The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover
printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is

Tests

http://sir.unl.edu/portal/index.php

Cost of each test: 1

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

14 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Pareto Front

 80

 82.5

 85

 87.5

 90

 92.5

 95

 97.5

 100

 0 1 2 3 4 5 6 7 8 9

co
ve

ra
ge

 le
ve

l

number of test cases

Pareto front

printtokens
printtokens2

replace

schedule
schedule2

tcas

totinfo

printtokens
printtokens2

replace
schedule

schedule2
tcas

totinfo

The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover
printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is

The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover
printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is

 80

 82.5

 85

 87.5

 90

 92.5

 95

 97.5

 100

 0 1 2 3 4 5 6 7 8 9

co
ve

ra
g

e
 le

ve
l

number of test cases

Pareto front

printtokens

printtokens2

replace

schedule
schedule2

tcas

totinfo

printtokens
printtokens2

replace
schedule

schedule2
tcas

totinfo

Fig. 1: Pareto front for the SIR instances

Table 3: Information about clauses-to-variables ratio, computation time of Al-
gorithm 2, average coverage and number of test cases for the two heuristic algo-
rithms for the instances from SIR.
Instance Ratio Algorithm 2 Local Search Genetic Algorithm

Original (s) Reduced (s) Avg. Cov. Avg. Tests Avg. Cov. Avg. Tests
printtokens 4.61 3400.74 2.17 100.00% 6.00 99.06% 5.16
printtokens2 4.61 3370.44 1.43 100.00% 4.60 99.23% 3.56
replace 4.62 1469272.00 345.62 100.00% 10.16 99.15% 15.46
schedule 2.19 492.38 0.24 100.00% 3.00 99.84% 2.90
schedule2 4.61 195.55 0.27 100.00% 4.00 99.58% 3.70
tcas 4.61 73.44 0.33 100.00% 4.00 95.80% 3.23
totinfo 4.53 181823.50 0.96 100.00% 5.00 98.89% 5.13

independent runs. However, the required number of test cases is non-optimal in
printtokens, printtokens2 and replace. LS obtains optimal solutions in the
rest of the programs. However, we should recall here that LS cannot ensure that
the result is an optimal solution, as the SAT-based approach does. In the case
of GA, it is not able to reach full coverage in any program.

It is interesting to remark that almost all the resulting SAT instances ob-
tained from the translation are in the phase transition of SAT problems except
the one for schedule. It has been shown experimentally that most of the in-
stances where the ratio of clauses-to-variables is approximately equal to 4.3 are
the hardest to be solved [18].

Tests Time

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

15 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Pareto Front
Table 2: Pareto optimal set and Front for the instances of SIR.

Instance Elements Tests Coverage Solution
printtokens 195 5 100% (t2222, t2375, t3438, t4100, t4101)

194 4 99.48% (t1908, t2375, t4099, t4101)
192 3 98.46% (t1658, t2363, t4072)
190 2 97.43% (t1658, t3669)
186 1 95.38% (t2597)

printtokens2 192 4 100% (t2521, t2526, t4085, t4088)
190 3 98.95% (t457, t3717, t4098)
188 2 97.91% (t2190, t3282)
184 1 95.83% (t3717)

replace 208 8 100% (t306, t410, t653, t1279, t1301, t3134, t4057, t4328)
207 7 99.51% (t309, t358, t653, t776, t1279, t1795, t3248)
206 6 99.03% (t275, t290, t1279, t1938, t2723, t2785)
205 5 98.55% (t426, t1279, t1898, t2875, t3324)
203 4 97.59% (t298, t653, t3324, t5054)
200 3 96.15% (t2723, t2901, t3324)
195 2 93.75% (t358, t5387)
187 1 89.90% (t358)

schedule 126 3 100% (t1403, t1559, t1564)
124 2 98.41% (t1570, t1595)
122 1 96.82% (t1572)

schedule2 119 4 100% (t2226, t2458, t2462, t2681)
118 3 99.15% (t101, t1406, t2516)
117 2 98.31% (t2461, t2710)
116 1 97.47% (t1584)

tcas 54 4 100% (t5, t1191, t1229, t1608)
53 3 98.14% (t13, t25, t1581)
50 2 92.59% (t72, t1584)
44 1 81.48% (t217)

totinfo 117 5 100% (t62, t118, t218, t1000, t1038)
115 4 98.29% (t62, t118, t913, t1016)
113 3 96.58% (t65, t216, t913)
111 2 94.87% (t65, t919)
110 1 94.01% (t179)

to equal the running time of the SAT-based method for each reduced instance.
For the two heuristic algorithms we show the average coverage and number of
test cases over 30 independent runs.

Regarding the computational time, we observe that all the instances can
be solved in much less time using the reduction. The speed up for the SAT-
based approach ranges from more than 200 for tcas to more than 2000 for
printtokens2. All the instances can be solved in around 2 seconds with the ex-
ception of replace, which requires almost 6 minutes. In the case of the heuristic
algorithms, we observe that LS reaches full coverage in all the instances and

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

16 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Reduction in the Number of Test Cases
Since we are considering cost 1 for the tests, we can apply an a priori reduction
in the original test suite

e1 e2 e3 ... em
t1 1 0 0 … 1

t2 1 0 1 … 1

… … … … … …

tn 1 1 0 … 0

Test t1 can be removed The result is an instance with fewer test cases but having the same Pareto front.
These transformed instances were solved using Algorithm 2. Table 1 shows the
size of the test suites with and without the reduction for each program. We can
observe a really great reduction in the number of test cases when the previous
approach is used.

Table 1: Details of the instances used in the experiments
Instance Original Size Reduced Size Elements to cover
printtokens 4130 40 195
printtokens2 4115 28 192
replace 5542 215 208
schedule 2650 4 126
schedule2 2710 13 119
tcas 1608 5 54
totinfo 1052 21 117

In Table 2 we present the Pareto optimal set and the Pareto front for the
instances described above. The columns “Tests” and “Elements” correspond to
the functions cost and cov of the 2-obj TSMP. The column “Coverage” is the
number of covered elements divided by the total number of elements. The optimal
solution for the 1-obj TSMP can be found in the lines with 100% coverage,
as explained in Section 3. It is not common to show the Pareto optimal set
or the Pareto front in numbers in the multi-objective literature because only
approximate Pareto fronts can be obtained for NP-hard problems. However, in
this case we obtain the exact Pareto fronts and optimal sets, so we think that this
information could be useful for future reference. Figure 1 shows the Pareto front
for all the instances of Table 1: they present the same information as Table 2
in a graphical way. The information provided in the tables and the figures is
very useful for the tester, knowing beforehand which are the most important
test cases and giving the possibility to make a decision taking into account the
number of tests necessary to assure a particular coverage level or vice versa.

We show in Table 3 the running time of Algorithm 2, which includes the
execution of Algorithm 1. The experiments were performed on a Laptop with
an Intel CORE i7 running Ubuntu Linux 11.04. Since the underlying algorithm
is deterministic the running time is an (almost) deterministic variable. The only
source of randomness for the SAT solver comes from limited random restarts and
the application of variable selection heuristics. Additionally, we compared the
running time of our approach with the performance of two heuristic algorithms:
a local search (LS) algorithm and a genetic algorithm (GA) for the 1-obj formu-
lation of the TSMP. The LS algorithm is based on an iterative best improvement
process and the GA is a steady-state GA with 10 individuals in the population,
binary tournament selection, bit-flip mutation with probability p = 0.01 of flip-
ping a bit, one-point crossover and elitist replacement. The stopping condition is

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

17 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Results with the Reduction
The optimal Pareto Front for the reduced test suite can be found from 200 to
180 000 times faster

 80

 82.5

 85

 87.5

 90

 92.5

 95

 97.5

 100

 0 1 2 3 4 5 6 7 8 9

co
ve

ra
g
e
 le

ve
l

number of test cases

Pareto front

printtokens

printtokens2

replace

schedule
schedule2

tcas

totinfo

printtokens
printtokens2

replace
schedule

schedule2
tcas

totinfo

Fig. 1: Pareto front for the SIR instances

Table 3: Information about clauses-to-variables ratio, computation time of Al-
gorithm 2, average coverage and number of test cases for the two heuristic algo-
rithms for the instances from SIR.
Instance Ratio Algorithm 2 Local Search Genetic Algorithm

Original (s) Reduced (s) Avg. Cov. Avg. Tests Avg. Cov. Avg. Tests
printtokens 4.61 3400.74 2.17 100.00% 6.00 99.06% 5.16
printtokens2 4.61 3370.44 1.43 100.00% 4.60 99.23% 3.56
replace 4.62 1469272.00 345.62 100.00% 10.16 99.15% 15.46
schedule 2.19 492.38 0.24 100.00% 3.00 99.84% 2.90
schedule2 4.61 195.55 0.27 100.00% 4.00 99.58% 3.70
tcas 4.61 73.44 0.33 100.00% 4.00 95.80% 3.23
totinfo 4.53 181823.50 0.96 100.00% 5.00 98.89% 5.13

independent runs. However, the required number of test cases is non-optimal in
printtokens, printtokens2 and replace. LS obtains optimal solutions in the
rest of the programs. However, we should recall here that LS cannot ensure that
the result is an optimal solution, as the SAT-based approach does. In the case
of GA, it is not able to reach full coverage in any program.

It is interesting to remark that almost all the resulting SAT instances ob-
tained from the translation are in the phase transition of SAT problems except
the one for schedule. It has been shown experimentally that most of the in-
stances where the ratio of clauses-to-variables is approximately equal to 4.3 are
the hardest to be solved [18].

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

18 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Background Testing SAT Transform. Results

R. Lopez-Herrejon et al., ICSM 2013

19 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Software Product Lines
A product line is a set of related products developed from a shared set of assets

•  The products have similar characteristics

•  The products have unique characteristics

Advantages

•  Support customization

•  Improves reuse

•  Reduce time to market

Product Lines are Pervasive

19

BMW Car Configurator

© RELH

Background Testing SAT Transform. Results

20 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Software Product Lines
In Software Product Lines the product is Software

They are modelled using Feature Models

Background Testing SAT Transform. Results

21 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Feature Models

Fig. 1. Graph Product Line Feature Model

In a feature model, each feature (except the root) has one
parent feature and can have a set of child features. Notice
here that a child feature can only be included in a feature
combination of a valid product if its parent is included as
well. The root feature is always included. There are four kinds
of feature relationships: i) Mandatory features are depicted
with a filled circle. A mandatory feature is selected whenever
its respective parent feature is selected. For example, features
Driver and GraphType, ii) Optional features are depicted
with an empty circle. An optional feature may or may not
be selected if its respective parent feature is selected. An
example is feature Weight, iii) Exclusive-or relations are
depicted as empty arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
exactly one of the features in the exclusive-or group must be
selected whenever the parent feature is selected. For example,
if feature Search is selected, then either feature DFS or
feature BFS must be selected, iv) Inclusive-or relations are
depicted as filled arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
at least one of the features in the inclusive-or group must
be selected if the parent is selected. If for instance, feature
Algorithms is selected then at least one of the features Num,
CC, SCC, Cycle, Shortest, Prim, and Kruskal must
be selected. Besides the parent-child relations, features can
also relate across different branches of the feature model with
the so called Cross-Tree Constraints (CTC). Figure 1 shows
some of the CTCs of our feature model2. For instance, Cycle
requires DFS means that whenever feature Cycle is
selected, feature DFS must also be selected. These constraints
as well as those implied by the hierarchical relations between
features are usually expressed and checked using propositional
logic, for further details refer to [12].

Let us illustrate pairwise coverage in GPL. This exam-
ple has 73 distinct products each with its unique feature
combination. Consider for instance the product that com-
putes numbering in DFS order on directed graphs without
weight. For this product the features selected are: GPL,
Driver, Benchmark, GraphType, Directed, Search,
DFS, Algorithms, and Num. Some examples of combina-
tions of pairs of feature interactions are: GPL and Search

selected, Weight and Undirected not selected, CC not
selected and Driver selected. An example of invalid pair, i.e.
not denoted by the feature model, is features Directed and
Undirected both selected. Notice that this pair is not valid
because they are part of an exclusive-or relation. In total, GPL
has 418 valid pairs, so a test suite for GPL must have these
pairs covered by at least one product feature combination.

2In total, the feature model has 13 CTCs for further details refer to [11].

III. MATHEMATICAL LINEAR PROGRAM

We are interested in minimizing the number of test products
and maximizing the pairwise coverage. Since we want to
compute the Pareto front of the multi-objective optimization
problem we proceed by fixing the number of test products
and defining a zero-one mathematical program that maximizes
coverage. The approach presented here relates to the work
by Arito et al. [13] for solving a multi-objective test suite
minimization problem in regression testing.

A zero-one program is an integer program in which the
variables can only take values 0 or 1 [14]. The details of the
algorithm applied are explained in Section IV. In this section
we describe the zero-one program. Let us call n to the number
of test products (that is fixed) and f to the number of features
of the FM. We will use the set of decision variables xi,j 2
{0, 1} where i 2 {1, 2, . . . , n} and j 2 {1, 2, . . . , f}. Variable
xi,j is 1 if product i has feature j and 0 otherwise. Not all the
combinations of features form valid products. Following [12],
we can express the validity of any product in an FM as a
boolean formula. These boolean formulas can be expressed in
Conjunctive Normal Form (CNF) as a conjunction of clauses,
which in turn can be expressed as constraints in a zero-one
program. The way to do it is by adding one constraint for
each clause in the CNF. Let us focus on one clause and let us
define the Boolean vectors v and u as follows [15]:

vj =

⇢
1 if feature j appears in the clause,
0 otherwise,

uj =

⇢
1 if feature j appears negated in the clause,
0 otherwise.

With the help of u and v we can write the constraint that
corresponds to one CNF clause for the i-th product as:

fX

j=1

vj(uj(1� xi,j) + (1� uj)xi,j) � 1 (1)

As an illustration, in the GPL model let us suppose that
Search is the 8-th feature and Num is the 12-th one. The
cross-tree constraint “Num requires Search” can be written
in CNF with the clause ¬Num _ Search and translated to a
zero-one constraint as: 1� xi,12 + xi,8 � 1.

Our focus is pairwise coverage. This means that we want
for each pair of features to cover 4 cases: both unselected, both
selected, first selected and second unselected and vice versa.
We introduce one variable in our program for each product,
each pair of features and each of these four possibilities.
The variables, called ci,j,k,l, take value 1 if product i covers
the pair of features j and k with the combination l. The
combination l is a number between 0 and 3 representing the
selection configuration of the features according to the next
mapping: l = 0, both unselected; l = 1, second selected and
first unselected; l = 2, first selected and second unselected;
and l = 3 both selected. The values of the variables ci,j,k,l

depend on the values of xi,j . In order to reflect this dependence
in the mathematical program we need to add the following

Mandatory features Optional features

Exclusive-or
relations

Inclusive-or
relations

Cross-tree constraints

Graph Product Line Feature Model

Background Testing SAT Transform. Results

22 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of Software Product Lines

Fig. 1. Graph Product Line Feature Model

In a feature model, each feature (except the root) has one
parent feature and can have a set of child features. Notice
here that a child feature can only be included in a feature
combination of a valid product if its parent is included as
well. The root feature is always included. There are four kinds
of feature relationships: i) Mandatory features are depicted
with a filled circle. A mandatory feature is selected whenever
its respective parent feature is selected. For example, features
Driver and GraphType, ii) Optional features are depicted
with an empty circle. An optional feature may or may not
be selected if its respective parent feature is selected. An
example is feature Weight, iii) Exclusive-or relations are
depicted as empty arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
exactly one of the features in the exclusive-or group must be
selected whenever the parent feature is selected. For example,
if feature Search is selected, then either feature DFS or
feature BFS must be selected, iv) Inclusive-or relations are
depicted as filled arcs crossing over a set of lines connecting
a parent feature with its child features. They indicate that
at least one of the features in the inclusive-or group must
be selected if the parent is selected. If for instance, feature
Algorithms is selected then at least one of the features Num,
CC, SCC, Cycle, Shortest, Prim, and Kruskal must
be selected. Besides the parent-child relations, features can
also relate across different branches of the feature model with
the so called Cross-Tree Constraints (CTC). Figure 1 shows
some of the CTCs of our feature model2. For instance, Cycle
requires DFS means that whenever feature Cycle is
selected, feature DFS must also be selected. These constraints
as well as those implied by the hierarchical relations between
features are usually expressed and checked using propositional
logic, for further details refer to [12].

Let us illustrate pairwise coverage in GPL. This exam-
ple has 73 distinct products each with its unique feature
combination. Consider for instance the product that com-
putes numbering in DFS order on directed graphs without
weight. For this product the features selected are: GPL,
Driver, Benchmark, GraphType, Directed, Search,
DFS, Algorithms, and Num. Some examples of combina-
tions of pairs of feature interactions are: GPL and Search

selected, Weight and Undirected not selected, CC not
selected and Driver selected. An example of invalid pair, i.e.
not denoted by the feature model, is features Directed and
Undirected both selected. Notice that this pair is not valid
because they are part of an exclusive-or relation. In total, GPL
has 418 valid pairs, so a test suite for GPL must have these
pairs covered by at least one product feature combination.

2In total, the feature model has 13 CTCs for further details refer to [11].

III. MATHEMATICAL LINEAR PROGRAM

We are interested in minimizing the number of test products
and maximizing the pairwise coverage. Since we want to
compute the Pareto front of the multi-objective optimization
problem we proceed by fixing the number of test products
and defining a zero-one mathematical program that maximizes
coverage. The approach presented here relates to the work
by Arito et al. [13] for solving a multi-objective test suite
minimization problem in regression testing.

A zero-one program is an integer program in which the
variables can only take values 0 or 1 [14]. The details of the
algorithm applied are explained in Section IV. In this section
we describe the zero-one program. Let us call n to the number
of test products (that is fixed) and f to the number of features
of the FM. We will use the set of decision variables xi,j 2
{0, 1} where i 2 {1, 2, . . . , n} and j 2 {1, 2, . . . , f}. Variable
xi,j is 1 if product i has feature j and 0 otherwise. Not all the
combinations of features form valid products. Following [12],
we can express the validity of any product in an FM as a
boolean formula. These boolean formulas can be expressed in
Conjunctive Normal Form (CNF) as a conjunction of clauses,
which in turn can be expressed as constraints in a zero-one
program. The way to do it is by adding one constraint for
each clause in the CNF. Let us focus on one clause and let us
define the Boolean vectors v and u as follows [15]:

vj =

⇢
1 if feature j appears in the clause,
0 otherwise,

uj =

⇢
1 if feature j appears negated in the clause,
0 otherwise.

With the help of u and v we can write the constraint that
corresponds to one CNF clause for the i-th product as:

fX

j=1

vj(uj(1� xi,j) + (1� uj)xi,j) � 1 (1)

As an illustration, in the GPL model let us suppose that
Search is the 8-th feature and Num is the 12-th one. The
cross-tree constraint “Num requires Search” can be written
in CNF with the clause ¬Num _ Search and translated to a
zero-one constraint as: 1� xi,12 + xi,8 � 1.

Our focus is pairwise coverage. This means that we want
for each pair of features to cover 4 cases: both unselected, both
selected, first selected and second unselected and vice versa.
We introduce one variable in our program for each product,
each pair of features and each of these four possibilities.
The variables, called ci,j,k,l, take value 1 if product i covers
the pair of features j and k with the combination l. The
combination l is a number between 0 and 3 representing the
selection configuration of the features according to the next
mapping: l = 0, both unselected; l = 1, second selected and
first unselected; l = 2, first selected and second unselected;
and l = 3 both selected. The values of the variables ci,j,k,l

depend on the values of xi,j . In order to reflect this dependence
in the mathematical program we need to add the following

The GPL Feature Model is small: 73 distinct products

But the number of products grows exponentially with the
number of features…

… and testing each particular product is not viable

Background Testing SAT Transform. Results

23 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Combinatorial Interaction Testing
Assuming each feature has been tested in isolation, most of the defects come from
the interaction between features

Combinatorial Interaction Testing consists in selecting the minimum number of
products that covers all t-wise interactions (t-wise coverage).

ZipMe

Compress Extract Checksum Adapt GZIP ArchCheck CRC

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔

1

2

3

4

5

6

64 products Example: 2-wise
ICPL

CASA

Background Testing SAT Transform. Results

24 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Multi-Objective Formulation
If we don’t have the resources to run all the tests, which one to choose?

Multi-objective formulation:

 minimize the number of products
 maximize the coverage (t-wise interactions)

The solution is not anymore a table of products, but a Pareto set

constraints for all i 2 {1, . . . , n} and all 1  j < k  f :

2ci,j,k,0  (1� xi,j) + (1� xi,k)  1 + ci,j,k,0 (2)
2ci,j,k,1  (1� xi,j) + xi,k  1 + ci,j,k,1 (3)
2ci,j,k,2  xi,j + (1� xi,k)  1 + ci,j,k,2 (4)
2ci,j,k,3  xi,j + xi,k  1 + ci,j,k,3 (5)

Variables ci,j,k,l inform about the coverage in one product.
We need new variables to count the pairs covered when all
the products are considered. These variables are called dj,k,l,
and take value 1 when the pair of features j and k with
combination l is covered by some product and 0 otherwise.
This dependence between the ci,j,k,l variables and the dj,k,l

variables is represented by the following set of inequalities for
all 1  j < k  f and 0  l  3:

dj,k,l 
nX

i=1

ci,j,k,l  n · dj,k,l (6)

Finally, the goal of our program is to maximize the pairwise
coverage, which is given by the number of variables dj,k,l that
are 1. We can write this as:

max

f�1X

j=1

fX

k=j+1

3X

l=0

dj,k,l (7)

The mathematical program is composed of the goal (7)
subject to the 4(n+1)f(f � 1) constraints given by (2) to (6)
plus the constraints of the FM expressed with the inequalities
(1) for each product. The number of variables of the program
is nf +2(n+1)f(f � 1). The solution to this zero-one linear
program is a test suite with the maximum coverage that can
be obtained with n products.

IV. ALGORITHM

The algorithm we use for obtaining the optimal Pareto set
is given in Algorithm 1. This algorithm takes as input the FM
and provides the optimal Pareto set. It starts by adding to the
set two solutions that are always in the set: the empty solution
(with zero coverage) and one arbitrary solution (with coverage
C

f
2 , number 2-combinations of the set of features). After that

it enters a loop in which successive zero-one linear programs
are generated for an increasing number of products starting
at 2. Each mathematical model is solved using a extended
SAT solver: MiniSat+3. This solver provides a test suite with
the maximum coverage. This solution is stored in the optimal
Pareto set. The algorithm stops when adding a new product to
the test suite does not increase the coverage. The result is the
optimal Pareto set.

V. EXPERIMENTS

This section describes how the evaluation was carried out
and its scalability analysis. The experimental corpus of our
evaluation is composed by a benchmark of 118 feature models,
whose number of products ranges from 16 to 640 products, that
are publicly available from the SPL Conqueror [16] and the
SPLOT [17] repositories. The objectives to optimize are the

3Available at URL: http://minisat.se/MiniSat+.html

Algorithm 1 Algorithm for obtaining the optimal Pareto set.
optimal set {;};
cov[0] 0;
cov[1] C

f
2 ;

sol arbitraryValidSolution(fm);
i 1;
while cov[i] 6= cov[i� 1] do

optimal set optimal set [{sol};
i i+ 1;
m prepareMathModel(fm,i);
sol solveMathModel(m);
cov[i] |sol|;

end while

number of products required to test the SPL and the achieved
coverage. It is desirable to obtain a high value of coverage in a
low number of products to test the SPL, so they are conflicting
objectives. Additionally, as performance measure we have also
analyzed the time required to run the algorithm, since we
want the algorithm to be as fast as possible. For comparison
these experiments were run in a cluster of 16 machines with
Intel Core2 Quad processors Q9400 at 2.66 GHz and 4 GB
running Ubuntu 12.04.1 LTS managed by the HT Condor 7.8.4
manager. Each experiment was executed in one core.

We computed the Pareto optimal front for each model.
Figure 2 shows this front for our running example GPL,
where the total coverage is obtained with 12 products, and
for every test suite size the obtained coverage is also optimal.
As our approach is able to compute the Pareto optimal front
for every feature model in our corpus, it makes no sense to
analyze the quality of the solutions. Instead, we consider more
interesting to study the scalability of our approach. For that,
we analyzed the execution time of the algorithm as a function
of the number of products represented by the feature model as
shown in Figure 3. In this figure we can observe a tendency:
the higher the number of products, the higher the execution
time. Although it cannot be clearly appreciated in the figure,
the execution time does not grow linearly with the number of
products, the growth is faster than linear.

Fig. 2. Pareto optimal front for our running example (GPL).

GPL

2-wise interactions

Background Testing SAT Transform. Results

25 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Approach

Original
SPLT

Instance
PB

Constraints
SAT

Instance

Background Testing SAT Transform. Results

26 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Approach
Modelling SPLT using PseudoBoolean constraints

All the variables are boolean {0,1}
The values of the signature are:

–  00 (both unselected)
–  10 (only first selected)
–  01 (only second selected)
–  11 (both selected)

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

Background Testing SAT Transform. Results

27 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Approach
Equations of the model

–  For each product p
•  Constraints imposed by the Feature Model

–  For each product p and pair of features i and j

Background Testing SAT Transform. Results

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

28 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Approach
Equations of the model (cont.)

–  For each pair of features i and j and signature k

•  n is the number of products
–  Objective: maximize coverage

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

1 Variables

Variable Meaning
xp,i Presence of feature i in product p
cp,i,j,k Product p covers the pair (i, j) with signature k

di,j,k The pair (i, j) with signature k is covered by some product
k takes values 0, 1, 2 and 3.

2 Equations

For each p:
The equations related to the constraints of the model
For all p, i and j:

2cp,i,j,3  xp,i + xp,j  1 + cp,i,j,3 (1)

2cp,i,j,2  xp,i + (1� xp,j)  1 + cp,i,j,3 (2)

2cp,i,j,1  (1� xp,i) + xp,j  1 + cp,i,j,3 (3)

2cp,i,j,0  (1� xp,i) + (1� xp,j)  1 + cp,i,j,3 (4)

(5)

For all i, j and k:

di,j,k 
X

p

cp,i,j,k  ndi,j,k (6)

where n is the number of products
Objective:

max :
X

i,j,k

di,j,k (7)

1

Background Testing SAT Transform. Results

29 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Approach

constraints for all i 2 {1, . . . , n} and all 1  j < k  f :

2ci,j,k,0  (1� xi,j) + (1� xi,k)  1 + ci,j,k,0 (2)
2ci,j,k,1  (1� xi,j) + xi,k  1 + ci,j,k,1 (3)
2ci,j,k,2  xi,j + (1� xi,k)  1 + ci,j,k,2 (4)
2ci,j,k,3  xi,j + xi,k  1 + ci,j,k,3 (5)

Variables ci,j,k,l inform about the coverage in one product.
We need new variables to count the pairs covered when all
the products are considered. These variables are called dj,k,l,
and take value 1 when the pair of features j and k with
combination l is covered by some product and 0 otherwise.
This dependence between the ci,j,k,l variables and the dj,k,l

variables is represented by the following set of inequalities for
all 1  j < k  f and 0  l  3:

dj,k,l 
nX

i=1

ci,j,k,l  n · dj,k,l (6)

Finally, the goal of our program is to maximize the pairwise
coverage, which is given by the number of variables dj,k,l that
are 1. We can write this as:

max

f�1X

j=1

fX

k=j+1

3X

l=0

dj,k,l (7)

The mathematical program is composed of the goal (7)
subject to the 4(n+1)f(f � 1) constraints given by (2) to (6)
plus the constraints of the FM expressed with the inequalities
(1) for each product. The number of variables of the program
is nf +2(n+1)f(f � 1). The solution to this zero-one linear
program is a test suite with the maximum coverage that can
be obtained with n products.

IV. ALGORITHM

The algorithm we use for obtaining the optimal Pareto set
is given in Algorithm 1. This algorithm takes as input the FM
and provides the optimal Pareto set. It starts by adding to the
set two solutions that are always in the set: the empty solution
(with zero coverage) and one arbitrary solution (with coverage
C

f
2 , number 2-combinations of the set of features). After that

it enters a loop in which successive zero-one linear programs
are generated for an increasing number of products starting
at 2. Each mathematical model is solved using a extended
SAT solver: MiniSat+3. This solver provides a test suite with
the maximum coverage. This solution is stored in the optimal
Pareto set. The algorithm stops when adding a new product to
the test suite does not increase the coverage. The result is the
optimal Pareto set.

V. EXPERIMENTS

This section describes how the evaluation was carried out
and its scalability analysis. The experimental corpus of our
evaluation is composed by a benchmark of 118 feature models,
whose number of products ranges from 16 to 640 products, that
are publicly available from the SPL Conqueror [16] and the
SPLOT [17] repositories. The objectives to optimize are the

3Available at URL: http://minisat.se/MiniSat+.html

Algorithm 1 Algorithm for obtaining the optimal Pareto set.
optimal set {;};
cov[0] 0;
cov[1] C

f
2 ;

sol arbitraryValidSolution(fm);
i 1;
while cov[i] 6= cov[i� 1] do

optimal set optimal set [{sol};
i i+ 1;
m prepareMathModel(fm,i);
sol solveMathModel(m);
cov[i] |sol|;

end while

number of products required to test the SPL and the achieved
coverage. It is desirable to obtain a high value of coverage in a
low number of products to test the SPL, so they are conflicting
objectives. Additionally, as performance measure we have also
analyzed the time required to run the algorithm, since we
want the algorithm to be as fast as possible. For comparison
these experiments were run in a cluster of 16 machines with
Intel Core2 Quad processors Q9400 at 2.66 GHz and 4 GB
running Ubuntu 12.04.1 LTS managed by the HT Condor 7.8.4
manager. Each experiment was executed in one core.

We computed the Pareto optimal front for each model.
Figure 2 shows this front for our running example GPL,
where the total coverage is obtained with 12 products, and
for every test suite size the obtained coverage is also optimal.
As our approach is able to compute the Pareto optimal front
for every feature model in our corpus, it makes no sense to
analyze the quality of the solutions. Instead, we consider more
interesting to study the scalability of our approach. For that,
we analyzed the execution time of the algorithm as a function
of the number of products represented by the feature model as
shown in Figure 3. In this figure we can observe a tendency:
the higher the number of products, the higher the execution
time. Although it cannot be clearly appreciated in the figure,
the execution time does not grow linearly with the number of
products, the growth is faster than linear.

Fig. 2. Pareto optimal front for our running example (GPL).

Background Testing SAT Transform. Results

30 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Testing of SPLs: Results

Fig. 3. Time (log scale) required to find optimal Pareto set against the number
of products of the feature models.

In order to check our intuition, we have performed a
Spearman’s rank correlation test. This test’s coefficient ⇢

takes into account the rank of the samples instead of the
samples themselves. The correlation coefficient between the
execution time and the number of products denoted by a
feature model is 0.831. This is a very high value that confirms
our expectations, the higher the number of products, the higher
the execution time of the algorithm. We also computed the
Spearman’s rank correlation for the execution time against the
number of features of the feature models which was quite
lower (0.407). This is because two feature models with the
same number of features could denote significantly different
number of products depending on the constraints derived from
the relationships between the features. In summary, the best
indicator of the execution time of our approach is the number
of products denoted by a feature model.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to exactly obtain the
optimal Pareto set of the multi-objective SPL pairwise testing
problem. We defined a zero-one linear mathematical program
and an algorithm based on SAT solvers for obtaining the
optimal Pareto set. By construction the solution obtained using
this approach is optimal and could serve as reference for mea-
suring the quality of the solutions proposed by approximated
methods.

The evaluation revealed a generally large runtime for our
feature models. This fact prompted us to analyze the impact
of the number of products and number of features in runtime.
We found a high correlation in the first case and a low
correlation in the second case. As a result of this finding
our future work is twofold. First, we want to streamline
the mathematical program representation in order to reduce
the runtime of the algorithm. We observed that some of the
constraints can be redundant. For instance, features that are
selected in all the products of the product line do not need a
variable since they are valid for any product. Similarly, there
are pairs of feature combinations, that is ci,j,k,l variables,
that are not valid according to the feature model and hence
can be eliminated [18]. We also noticed that removing some

of the redundant constraints can increase the runtime, while
adding more constraints could help the SAT solver search for
a solution. We plan to study the right balance of both reducing
and augmenting constraints. Second, we will look at larger
feature models to further study the scalability of our approach.

ACKNOWLEDGEMENTS

Funded by Austrian Science Fund (FWF) project P21321-
N15 and Lise Meitner Fellowship M1421-N15, the Spanish
Ministry of Economy and Competitiveness and FEDER under
contract TIN2011-28194 and fellowship BES-2012-055967.

REFERENCES

[1] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[2] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[3] E. Engström and P. Runeson, “Software product line testing - a
systematic mapping study,” Information & Software Technology, vol. 53,
no. 1, pp. 2–13, 2011.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” Information & Software Tech-
nology, vol. 53, no. 5, pp. 407–423, 2011.

[5] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

[6] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements
to a meta-heuristic search for constrained interaction testing,” Empirical
Software Engineering, vol. 16, no. 1, pp. 61–102, 2011.

[7] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test suites for large software product
lines,” CoRR, vol. abs/1211.5451, 2012.

[8] A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in ISSRE, T. Dohi
and B. Cukic, Eds. IEEE, 2011, pp. 120–129.

[9] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
1st ed. Wiley, June 2001.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

[11] R. E. Lopez-Herrejon and D. S. Batory, “A standard problem for
evaluating product-line methodologies,” in GCSE, ser. Lecture Notes
in Computer Science, J. Bosch, Ed., vol. 2186. Springer, 2001, pp.
10–24.

[12] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615–636, 2010.

[13] F. Arito, F. Chicano, and E. Alba, “On the application of sat solvers
to the test suite minimization problem,” in SSBSE, ser. Lecture Notes
in Computer Science, G. Fraser and J. T. de Souza, Eds., vol. 7515.
Springer, 2012, pp. 45–59.

[14] L. A. Wolsey, Integer Programming. Wiley, 1998.
[15] A. M. Sutton, L. D. Whitley, and A. E. Howe, “A polynomial time com-

putation of the exact correlation structure of k-satisfiability landscapes,”
in Proceedings of GECCO, 2009, pp. 365–372.

[16] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption,” Infor-
mation & Software Technology, vol. 55, no. 3, pp. 491–507, 2013.

[17] “Software Product Line Online Tools(SPLOT),” 2013, http://www.splot-
research.org/.

[18] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Using feature
model knowledge to speed up the generation of covering arrays,” in
VaMoS, S. Gnesi, P. Collet, and K. Schmid, Eds. ACM, 2013, p. 16.

Experiments on 118 feature models taken from
 SPLOT repository (http://www.splot-research.org)
 SPL Conqueror (http://wwwiti.cs.uni-magdeburg.de/~nsiegmun/SPLConqueror/)

16 to 640 products

Intel Core2 Quad Q9400

2.66 GHz, 4 GB

Background Testing SAT Transform. Results

31 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Background Algorithm Results

R. Lopez-Herrejon et al., GECCO 2014

32 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Formalization of prioritization testing scheme proposed by
Johansen et al.

•  Implementation with the Parallel Prioritized product line
Genetic Solver (PPGS)

•  Comprehensive evaluation and comparison against
greedy approach.

Our contributions
Background Algorithm Results

33 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Key ideas
–  Each feature combination represents an important product of the

SPL

–  For each relevant product give a positive integer value that
reflects the priority of the product

•  Market importance
•  Implementation costs
•  ...

Prioritization Motivation
Background Algorithm Results

34 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Example Feature List (FL)
Aircraft, Wing, Engine, Materials, High, Shoulder, Low, Piston, Jet,
Metal, Wood, Plastic, Cloth

Feature List and Feature Set
Background Algorithm Results

35 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

P
P

P

P

P

P

O

O

O

O

O O

P

Selected = {Aircraft, Wing, High, Engine, Piston, Materials, Cloth}

Unselected = {Shoulder, Low, Jet, Metal, Wood, Plastic}

Feature Set Example
Background Algorithm Results

36 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Examples of valid feature sets
–  Aircraft, Wing, Engine, Materials, High, Shoulder, Low, Piston,

Jet, Metal, Wood, Plastic, Cloth

315 valid
feature sets

Terminology (3)
Background Algorithm Results

37 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Example

pp1 = [p1, 17]

Prioritized Product
Background Algorithm Results

38 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

pc1=[{Plastic},{Cloth}] pc2=[{High, Wood},{}]

240 pairwise
configurations

Pairwise configuration
Background Algorithm Results

39 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

17
17
15
15
13
13
6
6

pc1=[{Plastic},{Cloth}]

 wpc1.w= pp0.w + pp2.w = 17 + 15 = 32

weights

Weighted Pairwise Configuration
Background Algorithm Results

40 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Example of ppCA

p1, p2, p5

new

products

Challenge: Find a ppCA with the minimum number of feature sets

Prioritized Pairwise Covering Array
Background Algorithm Results

41 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

PPGS Algorithm
Background Algorithm Results

42 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Parameter Setting
Crossover type one-point
Crossover probability 0.8
Selection strategy binary tournament
Population size 10
Mutation probability 0.1
Termination condition 1000 evaluations

Implemented in jMetal framework

Parameter setting
Background Algorithm Results

43 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Compared against Prioritized-ICPL (pICPL)
–  Proposed by Johansen et al. (2012)
–  Uses data parallelization

•  Three different weight priority assignment methods

•  Different percentages of selected products
–  Ranging from 5% upto 50%

Evaluation
Background Algorithm Results

44 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

1.  Measured values
–  16 real SPL examples
–  Code and feature model

available
–  Non-functional properties

measured (e.g. footprint)

2.  Ranked-based values
–  Based on how dissimilar

two products are
–  More dissimilar higher

chances of covering more
pairs

3.  Random values
–  [Min..Max] range

Weight priority assignment methods
Background Algorithm Results

45 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Problem instances G1 = 160 fm X 2 priority assig. X 3 percentages = 960

Problem instances G2 = 59 fm X 2 priority assig. X 3 percentages = 354

Problem instances G3 = 16 fm X 1 priority assig. = 16

Total independent runs = 1330 X 2 algorithms x 30 indep. runs = 79,800

G1 G2 G3 Summary
Number Feature Models 160 59 16 235
Number Products 16-1K 1K-80K 32-≈3E24 16-≈3E24
Number Features 10-56 14-67 6-101 6-101
Weight Priority Assignment
RK Ranked-Based, RD Random,
M Measured

RK,RD RK,RD M

Prioritized Products Percentage 20,30,50 5,10,20 ≈0.0 - 100
Problem Instances 960 354 16 1330

Experimental corpus
Background Algorithm Results

46 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Confidence level 95%
•  We show the mean and standard deviation of number of

products required to cover 50% upto 100% of the total
weighted coverage

•  We highlight where the difference is statistically significant

Group G1 – less than 1000 products

PPGS smaller size

pICPL faster

Wilcoxon Test (1)
Background Algorithm Results

47 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  PPGS yields test suites of smaller sizes
•  PPGS performs faster than pICPL

Group G2 – from 1,000 to 80,000 products

Wilcoxon Test (2)
Background Algorithm Results

48 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Group G3 – Measured Values, 32 to ≈3E24 products

PPGS

smaller size

pICPL

faster

Wilcoxon Test (3)
Background Algorithm Results

49 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Â12 is an effect size measure
–  i.e. value 0.3 means that an algorithm A would obtain lower values

than algorithm B for a measure M in 70% of the times

•  Lower values, PPGS obtains smaller test suites

PPGS obtains smaller size test suites most of the times

pICPL
smaller test

suites

pICPL
smaller test

suites

PPGS best performance

Â12 measure
Background Algorithm Results

50 / 50 Cádiz, Spain, July 2nd, 2015

Thanks for your attention !!!

Recent Research on
Search Based software Testing: Part 2

51 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

52 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  The set of solutions is the set of binary strings with length n

•  Neighborhood used: one-change neighborhood

Ø  Two solutions x and y are neighbors iff Hamming(x,y)=1

Binary Search Space

0 1 1 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 0 0

0 1 1 1 0 1 0 1 1 0

0 1 1 1 0 1 1 0 1 0

0 1 1 1 0 0 0 0 1 0

0 1 1 0 0 1 0 0 1 0

0 1 0 1 0 1 0 0 1 0

0 0 1 1 0 1 0 0 1 0

1 1 1 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

53 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  An elementary landscape is a landscape for which

where

•  Grover’s wave equation

Elementary Landscapes: Characterizations

Linear relationship

Eigenvalue

Depend on the
problem/instance

def

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

54 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  If f is elementary, the average of f in any sphere and ball of any size around x is a
 linear expression of f(x)!!!

Spheres around a Solution

H=1
H=2

H=3

Σ f(y’) = λ1 f(x)

Σ f(y’’) = λ2 f(x)

Σ f(y’’’) = λ3 f(x)

n non-null
possible values

Sutton

Whitley

Langdon

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

55 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  What if the landscape is not elementary?

•  Any landscape can be written as the sum of elementary landscapes

•  There exists a set of eigenfunctions of Δ that form a basis of the
 function space (Fourier basis)

Landscape Decomposition

X X X

e1

e2

Elementary functions

(from the Fourier basis)

Non-elementary function

f Elementary
components of f

f < e1,f > < e2,f >

< e2,f >

< e1,f >

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

56 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  The elementary landscape decomposition of

 is

Elementary Landscape Decomposition of f

constant expression

Tests that cover ei

Tests in the solution that cover ei

Krawtchouk matrix

Computable in

O(nk)

Tij =

⇢
1 if element mi is covered by test tj

0 otherwise

xi =

⇢
1 if test ti is selected

0 otherwise

100

✓
1� 1

d

2

◆
%

µ1 + d · �

µ1 � d · �

f(x) = cov(x)� c · cost(x)

1

F. Chicano et al., SSBSE 2011

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

57 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  The elementary landscape decomposition of f2 is
Computable in

O(nk2)

Number of tests that cover ei or ei’

Number of tests in
the solution that

cover ei or ei’

Elementary Landscape Decomposition of f2
Problem Formulation Landscape Theory Decomposition SAT Transf. Results

58 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  With the Elementary Landscape Decomposition (ELD) we can compute:

•  With the ELD of f and f2 we can compute for any sphere and ball around a solution:

•  Distribution of values around the average

Guarded Local Search

: the average : the standard deviation

Chebyshev inequality

At least 75% of the
samples are in the interval

f

Best Best

Apply local search Don’t apply local search

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

59 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

•  Steady state genetic algorithm: bit-flip (p=0.01), one-point crossover, elitist replacement

•  GA (no local search)

•  GLSr (guarded local search up to radius r)

•  LSr (always local search in a ball of radius r)

•  Instances from the Software-artifact Infrastructure Repository (SIR)

•  printtokens

•  printtokens2

•  schedule

•  schedule2

•  totinfo

•  replace

Guarded Local Search: Experimental Setting

n=100 test cases
Oracle cost c=1..5

100 independent runs
k=100-200 items to cover

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

60 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Guarded Local Search: Results
c=1 c=3 c=5

printtokens1

schedule

Time (secs.)

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

61 / 50 Cádiz, Spain, July 2nd, 2015

Test Suite
Minimization

Software Product
Lines

Pairwise Prioritized
Testing in SPL

Comparison with an LS and GA

Local Search

Best improvement

Genetic Algorithm
10 individuals

2-tournament

Bit-flip mutation (p=0.01)

1-point crossover

Steady-state

 80

 82.5

 85

 87.5

 90

 92.5

 95

 97.5

 100

 0 1 2 3 4 5 6 7 8 9

co
ve

ra
g

e
 le

ve
l

number of test cases

Pareto front

printtokens

printtokens2

replace

schedule
schedule2

tcas

totinfo

printtokens
printtokens2

replace
schedule

schedule2
tcas

totinfo

Fig. 1: Pareto front for the SIR instances

Table 3: Information about clauses-to-variables ratio, computation time of Al-
gorithm 2, average coverage and number of test cases for the two heuristic algo-
rithms for the instances from SIR.
Instance Ratio Algorithm 2 Local Search Genetic Algorithm

Original (s) Reduced (s) Avg. Cov. Avg. Tests Avg. Cov. Avg. Tests
printtokens 4.61 3400.74 2.17 100.00% 6.00 99.06% 5.16
printtokens2 4.61 3370.44 1.43 100.00% 4.60 99.23% 3.56
replace 4.62 1469272.00 345.62 100.00% 10.16 99.15% 15.46
schedule 2.19 492.38 0.24 100.00% 3.00 99.84% 2.90
schedule2 4.61 195.55 0.27 100.00% 4.00 99.58% 3.70
tcas 4.61 73.44 0.33 100.00% 4.00 95.80% 3.23
totinfo 4.53 181823.50 0.96 100.00% 5.00 98.89% 5.13

independent runs. However, the required number of test cases is non-optimal in
printtokens, printtokens2 and replace. LS obtains optimal solutions in the
rest of the programs. However, we should recall here that LS cannot ensure that
the result is an optimal solution, as the SAT-based approach does. In the case
of GA, it is not able to reach full coverage in any program.

It is interesting to remark that almost all the resulting SAT instances ob-
tained from the translation are in the phase transition of SAT problems except
the one for schedule. It has been shown experimentally that most of the in-
stances where the ratio of clauses-to-variables is approximately equal to 4.3 are
the hardest to be solved [18].

Total coverage (not Pareto front)

Problem Formulation Landscape Theory Decomposition SAT Transf. Results

