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Uncertainty and the Ideal Policeman

“knowing” ≡ “certainty”
“information to learn” ≡ “uncertainty”

dead man

list of suspects: resentful colleague, abandoned girlfriend,
envious brother
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Uncertainty and Information

information should be additive

information in an event should measure “reduction in
uncertainty” when the event occurs

low probability ⇒ high reduction in uncertainty

highest when every possible event is equally likely
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Entropy (Information Quantity)

uncertainty reduction when an event a ∈ A occurs is log2
1

p(a)
1

p(a) : low probability ⇒ high reduction in uncertainty

log2: information should be additive
2: base 2 produces information “bits”

get weighted average over all events: sum uncertainty
reduction for each event weighted by the probability of each
event

Entropy of a set of events

H(A) =
∑
a∈A

p(a) log2
1

p(a)
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Entropy calculations
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H = 1.log21 + 2.0.log20 = 0
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H = 3.13 .log23 = 1.585
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Example Program

l = h % 2;

Store is two 2-bit variables, h and l

h is confidential, l is public

stores representation is ordered pairs in h × l

1

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1)
(2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)
l = h % 2

Inputs

observations

0
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A formal treatment

A random variable (or discrete random element in this case) is
a total function X : D → R. D and R are finite sets, D has a
probability distribution.

joint random variable: (X ,Y ) defined as 〈X ,Y 〉
Entropy of a random variable X :

H(X ) =
∑
x∈R

p(x) log
1

p(x)

Associate random variables with expressions; program
variables; states at program points within a program.

Of interest are observations of values of variables and states
at ι (the entry point) and the special node ω (the exit point).
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Conditional Entropy

P((X � (Y = y)) = x) = P(X = x |Y = y), where

P(X = x |Y = y) =
p(x , y)

p(y)

H(X |Y ) =
∑
y

p(y)H(X � (Y = y))

A key property of conditional information is that
H(X |Y ) ≤ H(X ), with equality iff X and Y are independent.
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The Chain rule of Entropy

H(A,B) = H(A) +H(B|A)

Entropy of the joint variation of a pair of variables is the entropy of
one plus the conditional entropy of the other

p(x , y) = p(x).p(y |x)

Shannon Entropy



Mutual Information

Given two random variables X and Y , the mutual information
between X and Y , written I(X ;Y ) is defined as follows:

I(X ;Y ) =
∑
x

∑
y

p(x , y) log
p(x , y)

p(x)p(y)
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Symmetry of Mutual Information

Use the chain rule to get three equivalent definitions:

I(X ;Y ) = H(X ) +H(Y )−H(X ,Y )

I(X ;Y ) = H(X )−H(X |Y )

I(X ;Y ) = H(Y )−H(Y |X )

This quantity is a direct measure of the amount of information
carried by X which can be learned by observing Y (or vice versa).
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Yeung’s diagram
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Channel Capacity

Channel capacity in information theory is the maximum rate
at which information can flow along a given communication
channel.

A fundamental result in information theory is that the channel
capacity can be given as the least upper bound of the mutual
information between inputs and outputs over all possible
probability distributions on the input.⊔

σI

I(I ;O)
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In the case of deterministic programs

I(I ;O) = H(O)−H(O|I ) = H(O)

since O is a function of I .

So ⊔
σI

I(I ;O) =
⊔
σI

H(O)

The maximum that this quantity can possibly be is

log2|O|
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