Conditional Entropy and
Failed Error Propagation
In Software Testing



Is there a problem!?

Information theory is a useful level of abstraction at
which to model problems in software testing
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Input

Intended tl:ix== Unintended
t2:x==-5
X=xX+2; X=3*X;
1f(x>0) 1f(x>0)
X=xX%4: X=xX%4:
else xX=Xx; else xX=Xx;
output output
tl:x== tl:x==

t2 s X==- t2:x===15

wid Clark UCL 3 ICSE 4



software fault masking

® also called error masking / failed error
propagation

® reduces test set effectiveness

® Error masking condition:

Jx,s,s",y . PRE(x) A As,(z,s) AN PREg(s)
A —POSTc(s,s’) A wp(G(E¢q,E), POST)(x, s")

A POST(z,y)
Laski et al.’95



PREc(S)

wp(G(Ec, E),POST) (x4, s’
(G(Ec, E) l ‘) @// -POST(s,s")

G(EC7 E)

POST (x,y)
Ty
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® are the sub-programs labelled Q the same?
Not in general, but let us assume that they are.



Domain to Range Ratio

® collisions necessary, not sufficient, for fault
masking

® [Woodward and al-Khanjari (2000)] observed fault
masking associated with domain to range
ratio

® “‘loss of information measure”

DI/|R



information theoretic
view

Treat the input space and the output space for a
program as random variables: | and O

Oracle’s Observation
of Output

Information in a random variable

— > p(x)logap(x

re X
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Loss of information from running program P

deterministic case H(I) _ H(O) p— H([‘O)

where [P]I =0

Conditional entropy of | given O:
Squeeziness.

Sq(f) =HI) —H(O) = > plo) H(f o)

ocQ
@epartltlon p@
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what can we do with
Squeeziness!

® Measure how much Software Under Test is
inclined to fault masking

® |Improve test set selection to optimise for
individual test effectiveness



Use covering paths
to generate tests S

v

Pick a “less
Squeezy" path

Reduce possible
~ fault masking
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experimental validation

® consider statement coverage

® examine correlation between the
probability of failed error propagation and
squeeziness for different parts of a program

® use mutation testing setting so we have
both the intended and the unintended
program (= original and mutant)



Intended t t Unintended

P”
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assumptions

single error in each program (mutant)
mutation of assighment statements only
Q is the same in both programs

non-induced probability distributions are
uniform p.d. (MEP)



how easy is it to find an effective test input that
covers a given statement?

answer this by examining the information flow
behaviour of Q
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Rypothesis |

There is a correlation between
the probability of FEP for all input states
whose execution path includes pp’ and

sq([Q], [QI([Q]%pp))
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Intended t t Unintended

P”
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Hypothesis 2

There is a correlation between the probability
of FEP for all input states that reach pp'
via the execution of R' and

sq([R'], [R]%pp) + sq([Q'], [QU[Q]Epp))

R’ is the sub program of P’ that is
backwardly reachable from pp’
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Intended t —t Unintended
R Epp

P”

QI(Q]%py )

wid Clark UCL 20 ICSE |4



Hypothesis 3

There is a correlation between the probability of
FEP for all states that reach pp' via execution along

a path and
e —

T (1@ 1Q) (715
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Intended t Dy — ¢ Unintended

P”
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Hypothesis 4

There is a correlation between the probability of
FEP for all states that reach pp' via execution along
a path and

sq([ma], [ru][7 ]y ) + s([Q] [Q1([7]%1))
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Intended t Dy — ¢ Unintended

] [ ] g/ v
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Rypothesis 5

There is a correlation between the probability of
FEP for all states that reach pp' via execution along
a path and

sq(Iml], [7]pp )
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Intended t t Unintended

P”
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a squeeziness close to zero for a path means
that we don't need to rank the covering paths
but can simply use that path to generate
a test input to cover the program construct.
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Hypothesis 6

e >0 small,

sq([Q'], [QN([7]%E1)) < e = p(FEP) < e
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30 programs
7,140,000 test cases
five metrics

two metrics have 0.95 Spearman rank
correlation with p(FEP)

10% of test cases suffer from p(FEP)
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Table 1: Projects under investigation

Project | Function | total LoC | Mutants
Toy 17 810 383
R 10 221k 903
GRETL 3 286k 72

® Seeded faults into each program

® C mutation operator tool OAAN

® Generate mutants with SMT-C

® Gnu Debugger to extract internal states
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Table 2: Real world statistical subject programs

Project | Function C Files | LoC | SLoC
bratio 4 | 1667 1573
rhyper 2 338 260
gamma._cody 2 137 116
ptukey 7 | 1360 674
R ggamma 14 | 2397 1312
psi 2 261 119
pnorm_both 1 315 178
pnchisq_raw 1 275 181
gammain 5 527 264
qt 1 234 124
10 2 270 108
GRETL | kO 5 688 267
unity 3 339 147
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# of tests that weakly kill P’
but do not strongly kill P’

# of tests that weakly kill P’

< <

p(FEP) =

EXPI and EXP2: number of inputs that reach
pPp’ via any path

EXP3, EXP4 and EXP5: number of inputs that
reach pp’ via a single execution path
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[Q ] (HQ]] pr’) - 2ippr U 2ipp

Q([~]Zr) . 7l Yindy,

wid Clark UCL 33 ICSE 4



Table 3:

The proportion of randomly generated

tests for all subject programs that are weakly and
strongly killed.

Weakly Killed | Strongly Killed | Proportion
EP Yes Yes 84.73 %
FEP | Yes No 9.85 %
CC1 | No No 4.89 %
CC2 | No Yes 0.44 %
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Table 4: Spearman’s Rank Correlation Coefficient
for all programs.
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Experiment Correlation
EXP1 0.715267
EXP2 0.699165
EXP3 0.955647
EXP4 0.948299
EXP5 0.031510
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Table 7: Maximum p(FEP) for all programs

sq(®’') Range | Max sq(®R) | Max p(FEP)
< 0.1 0.090683 0.090683
< 0.01 0.001120 0.001120
< 0.001 0.000800 0.000200
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