
Conditional Entropy and
Failed Error Propagation

in Software Testing

1

David Clark UCL ICSE14

Is there a problem?

Information theory is a useful level of abstraction at
which to model problems in software testing

2

David Clark UCL ICSE14

x=x+2;
if(x>0)
 x=x%4;
 else x=x;

x=3*x;
if(x>0)
 x=x%4;
 else x=x;

Intended Unintended

input
t1:x==3
t2:x==-5

output
t1:x==1
t2:x==-3

output
t1:x==1
t2:x==-15

3

software fault masking
• also called error masking / failed error

propagation

• reduces test set effectiveness

• Error masking condition:

9x, s, s0, y . PRE(x) ^ ASC (x, s) ^ PREC(s)

^ ¬POSTC(s, s
0) ^ wp(G(EC ,E),POST)(x, s0)

^ POST(x, y)
Laski et al. ’95

4

David Clark UCL ICSE14

S

C

x

s

s’

y

PRE(x)

PREC(s)
ASC (x, s)

¬POSTC(s, s
0)

POST(x, y)

wp(G(EC ,E),POST)(x, s0)

G(EC ,E)

5

• are the sub-programs labelled Q the same?
Not in general, but let us assume that they are.

[[Q]]s = [[Q]]s0

6

Domain to Range Ratio

• collisions necessary, not sufficient, for fault
masking

• [Woodward and al-Khanjari (2000)] observed fault
masking associated with domain to range
ratio

• “loss of information measure” |D|/|R|

7

David Clark UCL ICSE14

information theoretic
view

Treat the input space and the output space for a
program as random variables: I and O

Information in a random variable

H(X) = �
X

x2X

p(x)log2p(x)

Oracle’s Observation
of Output

8

David Clark UCL ICSE14

Loss of information from running program P

H(I)�H(O)

where [[P]]I = O

Conditional entropy of I given O:
Squeeziness.

Sq(f) = H(I)�H(O) =
X

o2O

p(o) H(f�1o)

via the partition property

deterministic case = H(I|O)

9

David Clark UCL ICSE14

f

. . .

.

. . .
o

p(o)

f

�1
o

H(f�1
o)

10

what can we do with
Squeeziness?

• Measure how much Software Under Test is
inclined to fault masking

• Improve test set selection to optimise for
individual test effectiveness

11

David Clark UCL ICSE14

S

C

Use covering paths
to generate tests

Pick a “less
Squeezy" path

Reduce possible
fault masking

12

experimental validation

• consider statement coverage

• examine correlation between the
probability of failed error propagation and
squeeziness for different parts of a program

• use mutation testing setting so we have
both the intended and the unintended
program (= original and mutant)

13

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

14

assumptions

• single error in each program (mutant)

• mutation of assignment statements only

• Q is the same in both programs

• non-induced probability distributions are
uniform p.d. (MEP)

15

David Clark UCL ICSE14

how easy is it to find an effective test input that
covers a given statement?

answer this by examining the information flow
behaviour of Q

16

David Clark UCL ICSE14

Hypothesis 1

There is a correlation between
the probability of FEP for all input states
whose execution path includes pp’ and

sq([[Q]], [Q]([[Q]]⌃pp0))

17

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

⌃pp0

[[Q]]⌃pp0

[Q]([[Q]]⌃pp0)

18

David Clark UCL ICSE14

Hypothesis 2

R’ is the sub program of P’ that is
backwardly reachable from pp’

There is a correlation between the probability
of FEP for all input states that reach pp'

via the execution of R' and

sq([[R0]], [R0]⌃pp0) + sq([[Q0]], [Q0]([[Q0]]⌃pp0))

19

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

⌃pp0

[[Q]]⌃pp0

[Q]([[Q]]⌃pp0)

[R0]⌃pp0

20

David Clark UCL ICSE14

Hypothesis 3

There is a correlation between the probability of
FEP for all states that reach pp' via execution along

a path and

sq([[Q0]], [Q0]([[⇡]]⌃I))
[[⇡]]papp0

21

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended⌃I

[[⇡]]⌃I

[Q]([[⇡]]⌃I)

⇡ = A0B0

22

David Clark UCL ICSE14

Hypothesis 4

There is a correlation between the probability of
FEP for all states that reach pp' via execution along

a path and

sq([[⇡u]], [⇡u][[⇡]]
pa
pp0) + sq([[Q0]], [Q0]([[⇡]]⌃I))

23

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended⌃I

[[⇡]]⌃I

[Q]([[⇡]]⌃I)

⇡ = A0B0

[⇡u][[⇡]]
pa
pp0)

[[⇡]]papp0

⇡u = A0

24

David Clark UCL ICSE14

Hypothesis 5

There is a correlation between the probability of
FEP for all states that reach pp' via execution along

a path and

sq([[⇡l]], [[⇡]]
pa
pp0))

25

David Clark UCL ICSE14

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

[[⇡]]papp0

⇡ = A0B0

⇡l = B0

26

David Clark UCL ICSE14

a squeeziness close to zero for a path means
that we don't need to rank the covering paths

but can simply use that path to generate
a test input to cover the program construct.

27

David Clark UCL ICSE14

Hypothesis 6

✏ > 0 small,

sq([[Q0]], [Q0]([[⇡]]⌃I))  ✏ =) p(FEP)  ✏

28

• 30 programs

• 7,140,000 test cases

• five metrics

• two metrics have 0.95 Spearman rank
correlation with p(FEP)

• 10% of test cases suffer from p(FEP)

29

David Clark UCL ICSE14

• Seeded faults into each program
• C mutation operator tool OAAN
• Generate mutants with SMT-C
• Gnu Debugger to extract internal states

30

David Clark UCL ICSE1431

David Clark UCL ICSE14

EXP1 and EXP2: number of inputs that reach
pp’ via any path

EXP3, EXP4 and EXP5: number of inputs that
reach pp’ via a single execution path

p(FEP) =

of tests that weakly kill P 0

but do not strongly kill P 0

of tests that weakly kill P 0

32

David Clark UCL ICSE14

[Q]([[Q]]⌃pp0)

[Q]([[⇡]]⌃I)

⌃pp0 [⌃pp

[[⇡]]papp0 [[[⇡]]papp

33

David Clark UCL ICSE1434

David Clark UCL ICSE1435

David Clark UCL ICSE1436

