
Introduction Mutation Operators Conclusion

Advances in Mutation Testing Research for C++

Pedro Delgado-Pérez

TAROT: Intro Talk

June 2015

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 1 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 2 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 3 / 24



Introduction Mutation Operators Conclusion

Mutation testing

A brief definition

A fault injection testing technique. x > 1 → x < 1

Involves inserting simple syntactic changes in the program using
mutation operators.

Mutation operators are based on typical mistakes.

This modification creates a new version called mutant.

Goals

1 Measure how good is a test suite detecting faults affecting the program.
2 Improve the test suite through the results of the mutants.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 4 / 24



Introduction Mutation Operators Conclusion

Mutation testing

A brief definition

A fault injection testing technique. x > 1 → x < 1

Involves inserting simple syntactic changes in the program using
mutation operators.

Mutation operators are based on typical mistakes.

This modification creates a new version called mutant.

Goals

1 Measure how good is a test suite detecting faults affecting the program.
2 Improve the test suite through the results of the mutants.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 4 / 24



Introduction Mutation Operators Conclusion

Mutation testing

Mutant classification

1 Dead: The output of the original program and the mutant is different.
2 Alive: The change has not been detected:

Equivalence: The change cannot be detected by any input.
A new test case is needed to detect the change.

3 Invalid: The mutant does not comply with the grammar rules.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 5 / 24



Introduction Mutation Operators Conclusion

Mutation testing

Mutant classification

1 Dead: The output of the original program and the mutant is different.
2 Alive: The change has not been detected:

Equivalence: The change cannot be detected by any input.
A new test case is needed to detect the change.

3 Invalid: The mutant does not comply with the grammar rules.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 5 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 6 / 24



Introduction Mutation Operators Conclusion

Mutation testing research

History

First ideas in 1970s.

Early years: around procedural languages → traditional operators

From 1990s onwards: around other kind of languages and domains.

Mutation tools developed

Mothra - FORTRAN

MuJava - Java

GAmera - WS-BPEL

...

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 7 / 24



Introduction Mutation Operators Conclusion

Mutation testing research

Motivation

One of the most important programming languages → 4th position in
TIOBE index.

Research regarding C++ was pending.

Obtaining results about the usefulness of this technique in C++.

Possible reasons

Complexity of the language.

The technique to inject mutations in the code.

Dependency analysis of source code files.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 8 / 24



Introduction Mutation Operators Conclusion

Mutation testing research

Motivation

One of the most important programming languages → 4th position in
TIOBE index.

Research regarding C++ was pending.

Obtaining results about the usefulness of this technique in C++.

Possible reasons

Complexity of the language.

The technique to inject mutations in the code.

Dependency analysis of source code files.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 8 / 24



Introduction Mutation Operators Conclusion

The C++ programming language

Achievements

1 State of the art [1].
2 Definition of a set of class-level mutation operators [2].
3 Implementation of class mutation operators.

P. Delgado-Pérez, I. Medina-Bulo and J. J. Domínguez-Jiménez.
Analysis of the development process of a mutation testing tool for the
C++ language.
In The Ninth International Multi-Conference on Computing in the Global
Information Technology, ICCGI 2014. Seville, Spain, 2014.

P. Delgado-Pérez, I. Medina-Bulo, J. Domínguez-Jiménez,
A. García-Domínguez and F. Palomo-Lozano.
Class mutation operators for C++ object-oriented systems.
Annals of Telecommunications, April 2015.
ISSN 0003-4347.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 9 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 10 / 24



Introduction Mutation Operators Conclusion

Categories

Summary

Definition of 37 operators at the class level.

Operators grouped into 7 categories.

Adapted and new operators.

1 Access control
2 Inheritance
3 Polymorphism and dynamic binding
4 Method overloading
5 Exception handling
6 Object and member replacement
7 Miscellany

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 11 / 24



Introduction Mutation Operators Conclusion

Categories

Summary

Definition of 37 operators at the class level.

Operators grouped into 7 categories.

Adapted and new operators.

1 Access control
2 Inheritance
3 Polymorphism and dynamic binding
4 Method overloading
5 Exception handling
6 Object and member replacement
7 Miscellany

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 11 / 24



Introduction Mutation Operators Conclusion

Example

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A { class B: public A{

... ... ... ...
int method(){... ...}; /*IOD*/

}; };

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 12 / 24



Introduction Mutation Operators Conclusion

Example

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A { class B: public A{

... ... ... ...
int method(){... ...}; /*IOD*/

}; };

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 12 / 24



Introduction Mutation Operators Conclusion

Example

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A { class B: public A{

... ... ... ...
int method(){... ...}; /*IOD*/

}; };

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 12 / 24



Introduction Mutation Operators Conclusion

Example

Example “Polymorphism” block: PVI (virtual modifier insertion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A {

... ...
virtual int method(){... ...};

};

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 13 / 24



Introduction Mutation Operators Conclusion

Example

Example “Polymorphism” block: PVI (virtual modifier insertion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...};

}; };

Mutant:
class A {

... ...
virtual int method(){... ...};

};

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 13 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 14 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

AST transformations

Abstract Syntax Tree (AST): Simplified structure of the code.

Language elements are represented with different kind of nodes.

Traversal of the AST through pattern matching.

Useful to determine the mutation locations and transform the code.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 15 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 16 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Mutation operator implementation

Steps

1 Creation of the pattern using the DSL in Clang.
2 The source code is converted to the form of AST.
3 AST is traversed searching for every mutation

target.
4 The nodes retrieved are analyzed, ensuring that

the injection of a fault is possible at that point.
5 Depending on the nature of the operator, one or

more variants can be introduced in each location.
6 The mutation is inserted.
7 The source code containing the mutant is saved.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 17 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 18 / 24



Introduction Mutation Operators Conclusion

Can we insert the mutation?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...}

}; };

Goals

Prevent errors in the syntax of the code.

Avoid noise and silence in the pattern matching.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 19 / 24



Introduction Mutation Operators Conclusion

Can we insert the mutation?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...}

}; };

Goals

Prevent errors in the syntax of the code.

Avoid noise and silence in the pattern matching.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 19 / 24



Introduction Mutation Operators Conclusion

Can we insert the mutation?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Example “Inheritance” block: IOD (Overriding method deletion)

Original:
class A { class B: public A{

... ... ... ...
int method(){... ...}; int method(){... ...}

}; };

Goals

Prevent errors in the syntax of the code.

Avoid noise and silence in the pattern matching.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 19 / 24



Introduction Mutation Operators Conclusion

Is the mutation valuable?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Unproductive mutants

Those mutants which do not help the purpose of mutation testing.
Mutants:

1 Invalid mutants.
2 Equivalent mutants
3 Trivial mutants.

Detect situations always producing an unproductive mutant.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 20 / 24



Introduction Mutation Operators Conclusion

Is the mutation valuable?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Unproductive mutants

Those mutants which do not help the purpose of mutation testing.
Mutants:

1 Invalid mutants.
2 Equivalent mutants
3 Trivial mutants.

Detect situations always producing an unproductive mutant.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 20 / 24



Introduction Mutation Operators Conclusion

Is the mutation valuable?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Original:
class A { class B: public A{
... ... ... ...
virtual int method() = 0; int method(){... ...};

}; };
Mutant:

class A { class B: public A{
... ... ... ...
virtual int method() = 0; /*IOD*/

}; };

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 21 / 24



Introduction Mutation Operators Conclusion

Is the mutation valuable?

1 Check appropriate conditions for the mutation.
2 Reduce unproductive mutations.

Original:
class A { class B: public A{
... ... ... ...
virtual int method() = 0; int method(){... ...};

}; };
Mutant:

class A { class B: public A{
... ... ... ...
virtual int method() = 0; /*IOD*/

}; };

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 21 / 24



Introduction Mutation Operators Conclusion

Index

1 Introduction
Mutation testing
Research line

2 Mutation Operators
Class mutation operators
Mutation operator implementation
Correct mutations

3 Conclusion
Conclusion

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 22 / 24



Introduction Mutation Operators Conclusion

Conclusion

Summary

Goal: apply mutation testing to C++.

First step: definition of 37 class mutation operators.

Second step: automation of mutation operators.

Third step: evaluation and improvement of operators.

Future work

Measure quality metrics.
Improve the mutation tool:

Test coverage.
New standards of the language.

Evolutionary Mutation Testing.

Contribution of class operators.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 23 / 24



Introduction Mutation Operators Conclusion

Conclusion

Summary

Goal: apply mutation testing to C++.

First step: definition of 37 class mutation operators.

Second step: automation of mutation operators.

Third step: evaluation and improvement of operators.

Future work

Measure quality metrics.
Improve the mutation tool:

Test coverage.
New standards of the language.

Evolutionary Mutation Testing.

Contribution of class operators.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 23 / 24



Introduction Mutation Operators Conclusion

Conclusion

Summary

Goal: apply mutation testing to C++.

First step: definition of 37 class mutation operators.

Second step: automation of mutation operators.

Third step: evaluation and improvement of operators.

Future work

Measure quality metrics.
Improve the mutation tool:

Test coverage.
New standards of the language.

Evolutionary Mutation Testing.

Contribution of class operators.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 23 / 24



Introduction Mutation Operators Conclusion

Conclusion

Summary

Goal: apply mutation testing to C++.

First step: definition of 37 class mutation operators.

Second step: automation of mutation operators.

Third step: evaluation and improvement of operators.

Future work

Measure quality metrics.
Improve the mutation tool:

Test coverage.
New standards of the language.

Evolutionary Mutation Testing.

Contribution of class operators.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 23 / 24



Introduction Mutation Operators Conclusion

Conclusion

Summary

Goal: apply mutation testing to C++.

First step: definition of 37 class mutation operators.

Second step: automation of mutation operators.

Third step: evaluation and improvement of operators.

Future work

Measure quality metrics.
Improve the mutation tool:

Test coverage.
New standards of the language.

Evolutionary Mutation Testing.

Contribution of class operators.

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 23 / 24



Introduction Mutation Operators Conclusion

Thank you for your attention

TAROT-2015

Pedro Delgado-Pérez
pedro.delgado@uca.es

P. Delgado-Pérez UCASE (University of Cádiz)

Advances in Mutation Testing Research for C++ TAROT: Intro Talk 24 / 24

pedro.delgado@uca.es

	Introduction
	Mutation testing
	Research line

	Mutation Operators
	Class mutation operators
	Mutation operator implementation
	Correct mutations

	Conclusion
	Conclusion


