
Challenges and
Opportunities in Mobile

Testing
Alessandra Gorla

IMDEA Software Institute, Madrid, Spain

Intro

B.Sc. and M.Sc. in Milano-Bicocca, Italy
Data-flow testing of Java Applications

Search-based Data-flow Test Generation
Mattia Vivanti

University of Lugano
Lugano, Switzerland
mattia.vivanti@usi.ch

Andre Mis · Alessandra Gorla
Saarland University

Saarbrücken, Germany
{amis,gorla}@cs.uni-saarland.de

Gordon Fraser
University of Sheffield

Sheffield, UK
Gordon.Fraser@sheffield.ac.uk

Abstract—Coverage criteria based on data-flow have long been
discussed in the literature, yet to date they are still of surprising
little practical relevance. This is in part because 1) manually
writing a unit test for a data-flow aspect is more challenging than
writing a unit test that simply covers a branch or statement, 2)
there is a lack of tools to support data-flow testing, and 3) there is
a lack of empirical evidence on how well data-flow testing scales
in practice. To overcome these problems, we present 1) a search-
based technique to automatically generate unit tests for data-flow
criteria, 2) an implementation of this technique in the EVOSUITE
test generation tool, and 3) a large empirical study applying this
tool to the SF100 corpus of 100 open source Java projects. On
average, the number of coverage objectives is three times as high
as for branch coverage. However, the level of coverage achieved
by EVOSUITE is comparable to other criteria, and the increase in
size is only 15%, leading to higher mutation scores. These results
counter the common assumption that data-flow testing does not
scale, and should help to re-establish data-flow testing as a viable
alternative in practice.

Keywords-data-flow coverage, search based testing, unit testing

I. INTRODUCTION

Systematic test generation is often driven by coverage
criteria based on structural program entities such as statements
or branches. In contrast to such structural criteria, data-flow
criteria focus on the data-flow interactions within or across
methods. The intuition behind these criteria is that if a value
is computed in one statement and used in another, then it is
necessary to exercise the path between these statements to
reveal potential bad computations. Studies showed that data-
flow testing is particularly suitable for object-oriented code [4],
[17], [31], as object-oriented methods are usually shorter than
functional procedures with complex intra-procedural logic, for
which classic structural criteria are intended.

Despite these studies, data-flow criteria are rarely used in
practice, and this is the case because of two main reasons: First
of all, there is little support for testers to measure the data-flow
coverage of their test suites1, while there is ample choice for
structural criteria2. Secondly, testers have to put more effort
in writing test cases that satisfy data-flow criteria: it is more
difficult to come up with a test case that exercises a variable
definition as well as a use, rather than just having to reach one

1To the best of our knowledge, Coverlipse [21], DaTeC [6], [7] and
DUAF [33] are the only code coverage tools that support data-flow criteria
for Java.

2http://java-source.net/open-source/code-coverage

statement [8]. This emphasizes the importance of automated
test generation tools — however, most existing systematic test
generation tools target either statement or branch coverage.

A further problem preventing wide-spread adoption of data-
flow criteria is a lack of understanding of how well they scale
to real world applications. Intuitively, data-flow criteria result
in more test objectives to cover, and consequently also more
test cases, but the number of infeasible test objectives (i.e.,
infeasible paths from definitions to uses of the same variable)
is also expected to be larger than for simpler structural criteria.
However, there simply is not sufficient empirical evidence to
decide whether this is a show-stopper in adoption of data-flow
testing criteria, or just a minor side effect.

To address these problems, in this paper we present a data-
flow test generation technique implemented as an extension
of the search-based EVOSUITE [11] tool, which we applied
to 100 randomly selected open source Java projects. In detail,
the contributions of this paper are as follows:

• We present a search-based technique to generate unit
tests for data-flow criteria. This technique uses a genetic
algorithm for both, the classical approach of targeting one
test objective at a time, as well as the alternative approach
of targeting all test objectives at the same time.

• We present an implementation of this technique, extend-
ing the EVOSUITE test generation tool to generate test
suites targeting all definition-use pairs.

• We present the results of a large empirical study on
open source Java applications (the SF100 corpus of
classes [12]) in order to shed light on how data-flow
testing scales and compares to other criteria in practice.

The results of our experiments indicate that data-flow testing
is a viable alternative and does not suffer from scalability
problems as feared. Given the same fixed amount of time for
test generation, data-flow testing achieves significantly higher
mutation scores than test suites targeting branch coverage. The
effectiveness of EVOSUITE at producing data-flow oriented
test suites is comparable to that of producing structural test
suites, and thus in theory there is no good reason why data-
flow criteria should not be applied by default in practice.

II. BACKGROUND

Structural testing techniques use the structure of the unit
under test (i.e., nodes and branches in the control flow graph)
as test objectives, and they consider a test suite to be adequate

Contextual Integration Testing of Classes⋆

Giovanni Denaro1, Alessandra Gorla2, and Mauro Pezzè1,2

1 University of Milano-Bicocca, Dipartimento di Informatica, Sistemistica e
Comunicazione, Via Bicocca degli Arcimboldi 8, 20126, Milano, Italy

denaro@disco.unimib.it
2 University of Lugano, Faculty of Informatics,

via Buffi 13, 6900, Lugano, Switzerland
alessandra.gorla@lu.unisi.ch, mauro.pezze@unisi.ch

Abstract. This paper tackles the problem of structural integration test-
ing of stateful classes. Previous work on structural testing of object-
oriented software exploits data flow analysis to derive test requirements
for class testing and defines contextual def-use associations to charac-
terize inter-method relations. Non-contextual data flow testing of classes
works well for unit testing, but not for integration testing, since it misses
definitions and uses when properly encapsulated. Contextual data flow
analysis approaches investigated so far either do not focus on state de-
pendent behavior, or have limited applicability due to high complexity.
This paper proposes an efficient structural technique based on contex-
tual data flow analysis to test state-dependent behavior of classes that
aggregate other classes as part of their state.

1 Introduction

Object-oriented programs are characterized by classes and objects, which enforce
encapsulation and behave according to their internal state. Object-oriented fea-
tures discipline programming practice, and reduce the impact of some critical
classes of faults, for instance those that derive from excessive use of non-local
information or from unexpected access to hidden details. However, they intro-
duce new behaviors that cannot be checked satisfactorily with classic testing
techniques, which assume procedural models of software [1]. In this paper, we
focus on structural testing of state-based behavior, which impacts on both unit
and integration testing of classes.

The most promising structural approaches to testing object oriented software
exploit data flow analysis to implicitly capture state-based interactions. Harrold
and Rothermel proposed data flow analysis for structural testing of classes in
1994 [2]. In their early work, Harrold and Rothermel define a class control flow
graph to model data flow interactions within classes, and apply data flow anal-
ysis to characterize such interactions in terms of flow relations of class state

⋆ This work has been partially funded by the European Commission through the
project SHADOWS, by the Italian Government through the project COMMUTA
and by the Swiss National Fund through the project PerSeoS.

FASE 2008 ISSRE 2008

Intro

PhD in Informatics in Lugano, Switzerland

Automatic Workarounds for Web Applications

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

ICSE 2013 ICSE 2014TOSEM 2015
FSE 2010

Intro

Postdoc Saarland University, Germany

Malware detection in Android applications

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT
How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security

Keywords
Android, malware detection, description analysis, clustering

1. INTRODUCTION
Checking whether a program does what it claims to do is a long-

standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some program
behavior will be beneficial or malicious. The problem is that any
specification on what makes behavior beneficial or malicious very
much depends on the current context. In the mobile world, for
instance, a behavior considered malicious in one app may well be a
feature of another app:
⇤Ilaria Tavecchia is now with SWIFT, Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

Figure 1: Detecting applications with unadvertised behavior.
Starting from a collection of “good” apps (1), we identify their
description topics (2) to form clusters of related apps (3). For
each cluster, we identify the sentitive APIs used (4), and can
then identify outliers that use APIs that are uncommon for that
cluster (5).

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as
advertised. In all the examples above, the user would be informed
and asked for authorization before any questionable behavior. It is
the covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As
a proxy for its implemented behavior, we use the set of Android
application programming interfaces (APIs) that are used from within

ICSE 2014 ICSE 2015 SBST 2014

Intro

Assistant professor @ IMDEA software
Madrid, Spain

since January 2015

under
submission

to be
submitted

Interested in internships
short visits

giving talks??

https://www.software.imdea.org/~alessandra.gorla
alessandra.gorla@imdea.org

About this talk

• intro to Android

• state of the art in Android testing

• open challenges and opportunities ahead

The mobile market and
the Android ecosystem

http://www.lukew.com/

The growth of the mobile
market is impressive

Mobile market

Android history

2009

M

Android devices

Release adoption

Open source culture
• Android operating system is build upon many

different open source components.

• libraries

• Linux kernel

• user interface

• applications

… but
• There are also closed source components

• boot loaders

• peripheral firmware

• radio components

• Applications

• And changes in Android are not made available to the
public immediately

Android stakeholders

8 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 8

This section explores each stakeholder’s purpose and motivations, and it exam-
ines how the stakeholders relate to each other.

Each group is from a different fi eld of industry and serves a particular pur-
pose in the ecosystem. Google, having given birth to Android, develops the
core operating system and manages the Android brand. Hardware fabricators
make the underlying hardware components and peripherals. OEMs make the
end-user devices and manage the integration of the various components that
make a device work. Carriers provide voice and data access for mobile devices. A
vast pool of developers, including those who are employed by members of other
groups, work on a multitude of projects that come together to form Android.

Figure 1-4 shows the relationships between the main groups of ecosystem
stakeholders.

Google All levels

All levels

Kernel, Radio

Apps, boot loader
and radio reqs

OEMs

Carriers

System-on-Chip
Manufacturers

Consumers

Figure 1-4: Ecosystem relationships

These relationships indicate who talks to who when creating or updating
an Android device. As the fi gure clearly shows, the Android ecosystem is very
complex. Such business relationships are diffi cult to manage and lead to a variety
of complexities that are covered later in this chapter. Before getting into those
issues, it’s time to discuss each group in more detail.

Google
As the company that brought Android to market, Google has several key
roles in the ecosystem. Its responsibilities include legal administration, brand

Developers
• Developers may contribute to the Android platform.

• Code review process by Google before including
external code.

• Most of external developers contribute by writing apps
(through SDK and APIs)

• Automated analysis before publishing an app in the
store.

• Ranking and report system for further quality

Ecosystem complexity

• fragmentation in hardware

• fragmentation in software

• customization

Issues for quality assurance?

+1000 devices

X

~4 OS releases

QA issues

Security issues

• Updates might take a long time before being
propagated to carrier specific devices.

• Security issues may be fixed after a long time (or
even never).

Device
manufacturers

Carriers

Security issues are often
specific to hw and sw
configurations.

Fragmentation makes it hard
to develop security attacks
that are valid for most
devices.

Security issues detected in
the main Android components
might take a long time before
they are fixed on all devices

Update mechanisms
• Updates to Android are pushed to Nexus phones

directly by Google. Days-weeks between security issue
report and pushing a fix.

• For other devices it takes longer. Months-years or even
never.

• Almost no back-porting (i.e. applying a fix to older
versions of the system).

• Updates to apps are easier. Done directly by app
developers through the Google store.

Android architecture

Android components26 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 26

Stock Android Apps

System Services

Your Apps/Market Apps

android.*

App
API

Binder

JNI

Dalvik/Android Runtime/Zygote

Libraries
Bionic/OpenGL/WebKit/...

Hardware
Abstraction Layer

Linux Kernel
Wakelocks/Lowmem/Binder/Ashmem/Logger/RAM Console/...

Native Daemons Init/Toolbox

java.*
(Apache Harmony)

Launcher2 Phone AlarmClock
Email Settings Camera
Gallery Mms DeskClock
Calendar Browser Bluetooth
Calculator Contacts ...

Power Manager Mount Service Status Bar Manager
Activity Manager Notification Manager Sensor Service
Package Manager Location Manager Window Manager
Battery Manager Surface Flinger ...

Figure 2-1: General Android system architecture

Source: Karim Yaghmour of Opersys Inc. (Creative Commons Share-Alike 3.0 license)
ht tp: / /www .sl ideshare.net /opersys/ inside-androids-ui

Android applications allow developers to extend and improve the functionality
of a device without having to alter lower levels. In turn, the Android Framework
provides developers with a rich API that has access to all of the various facilities
an Android device has to offer—the “glue” between apps and the Dalvik virtual
machine. This includes building blocks to enable developers to perform common
tasks such as managing user interface (UI) elements, accessing shared data stores,
and passing messages between application components.

Both Android applications and the Android Framework are developed in the
Java programming language and execute within the Dalvik virtual machine
(DalvikVM). This virtual machine (VM) was specially designed to provide an
effi cient abstraction layer to the underlying operating system. The DalvikVM
is a register-based VM that interprets the Dalvik Executable (DEX) byte code
format. In turn, the DalvikVM relies on functionality provided by a number of
supporting native code libraries.

The user-space native code components of Android includes system services,
such as vold and DBus; networking services, such as dhcpd and wpa_supplicant;
and libraries, such as bionic libc, WebKit, and OpenSSL. Some of these services
and libraries communicate with kernel-level services and drivers, whereas others
simply facilitate lower-level native operations for managed code.

Dalvik VM
• Specifically designed to provide an efficient

abstraction layer to the underlying OS

• register-based VM

• interprets Dalvik Executable (DEX bytecode
format)

• relies on functionalities provided by a number of
supporting native code libraries

Android RunTime
• although..

• Google recently introduce a new runtime
environment: ART (Android RunTime)

• experimental in Android 4.4 (KitKat)

• default in Android Lollipop

• main advantage: performance. Instead of Just In
Time compiler, it now compiles Ahead Of Time

Android Runtime

Android RunTime

Zygote

• Daemon responsible of launching apps.

• Forks a new process for each app.

User-space native code
components

• Include system services and libraries

• they communicate with the kernel-level services
and drivers.

• facilitate the low-level operations

Linux Kernel
• Android made numerous additions and changes to

the kernel.

• provide additional functionalities such as

• camera access

• wi-fi

• binder driver (for inter-processes communication)

Main components of an
Android app

APK building process

Android Manifest
Unique package name

List of activities, services…

Permission definitions

External libraries

shared UID information
preferred installation location

Activities

• In essence it is the UI.

• An activity consists of a window along with several
other UI elements.

• Activities are managed by the activity manager
service (which also processes intents that are sent
to invoke activities).

Activity life cycle

Services

• Application components without UI that run in the
background.

• For example, SmsReceiver or BluetoothService

• Services can typically be stopped, started or
bound all by way of Intents.

Intents
• Intents are the key part of inter-app

communications.

• they are message objects that contain information
about an operation to be performed (e.g. make a
phone call)

• Intent can also be implicit, when they do not have a
specific destination.

Broadcast Receivers

• Another component of the IPC.

• Commonly found where applications want to
receive an implicit intent matching certain criteria
(e.g. receive a SMS).

• They can also be registered at runtime (i.e. not
necessarily in the Android Manifest)

Content providers

• Act as a structured interface to common shared
data stores (typically SQLite).

• E.g. Contacts and Calendar providers manage
centralized repositories with different entries

• Applications may have they own content provider,
and may expose it to other apps.

Android security
model

Security Boundaries
• Places in the system where the level of trust differs

on either side

• Boundary between kernel-space and user-
space.

• Code in kernel space is trusted to perform low-
level operation and access physical memory.

• Code in user-space cannot access all the
memory.

Permissions in Android
• Android OS uses two separate but cooperative permission

models

• Low level: Linux kernel enforces permissions using users
and groups (inherited by Linux)

• Low level permission system is usually referred to as the
Android sandbox.

• High level: app permissions, which limit the abilities of
Android apps.

• The Android runtime/Dalvik VM enforce the high level model

Android’s sandbox

• Unix-like process isolation

• Principle of least privilege

Android sandbox

• Processes run as separate users and cannot
interfere with each other (e.g. send signals or
access one another’s memory space)

• Unique user IDs for most processes

• Tightly restricted file system permissions

UID’s
• Android shares Linux’s UID/GID paradigm, but

does not have the traditional passwd and group
files for credentials.

• Android defines a map of names to unique
identifiers known as Android IDs (AIDs)

• In addition to AIDs, Android uses supplementary
groups to enable processes to access shared/
protected resources (e.g. sdcard_rw)

At runtime
• When apps execute their UID, GID and

supplementary groups are assigned to a newly
created process.

• Running under unique UID and GID enables the
operating system to enforce lower-level restrictions
in the kernel

• Inter-app interaction is possible, and it is controlled
by the runtime environment.

output of PS command

 Chapter 2 ■ Android Security Design and Architecture 29

c02.indd 01:14:22:PM 02/24/2014 Page 29

Aside from enforcing fi le system access, supplementary groups may also be
used to grant processes additional rights. The AID_INET group, for instance,
allows for users to open AF_INET and AF_INET6 sockets. In some cases, rights
may also come in the form of a Linux capability. For example, membership in the
AID_INET_ADMIN group grants the CAP_NET_ADMIN capability, allowing the user to
confi gure network interfaces and routing tables. Other similar, network-related
groups are cited later in the “Paranoid Networking” section.

In version 4.3 and later, Android increases its use of Linux capabilities. For
example, Android 4.3 changed the /system/bin/ run-as binary from being
set-UID root to using Linux capabilities to access privileged resources. Here,
this capability facilitates access to the packages. l ist fi le.

N O T E A complete discussion on Linux capabilities is out of the scope of this
chapter. You can fi nd more information about Linux process security and Linux
capabilities in the Linux kernel’s Documentat ion/securi ty/credent ials. txt
and the capabi l i t ies manual page, respectively.

When applications execute, their UID, GID, and supplementary groups are
assigned to the newly created process. Running under a unique UID and GID
enables the operating system to enforce lower-level restrictions in the kernel,
and for the runtime to control inter-app interaction. This is the crux of the
Android sandbox.

The following snippet shows the output of the ps command on an HTC One
V. Note the owning UID on the far left, each of which are unique for each app
process:

app_16 4089 1451 304080 31724 . . . S com.htc.bgp
app_35 4119 1451 309712 30164 . . . S com.google.android.calendar
app_155 4145 1451 318276 39096 . . . S com.google.android.apps.plus
app_24 4159 1451 307736 32920 . . . S android.process.media
app_151 4247 1451 303172 28032 . . . S com.htc. lockscreen
app_49 4260 1451 303696 28132 . . . S com.htc.weather .bg
app_13 4277 1451 453248 68260 . . . S com.android.browser

Applications can also share UIDs, by way of a special directive in the
application package. This is discussed further in the “Major Application
Components” section.

Under the hood, the user and group names displayed for the process are
actually provided by Android-specifi c implementations of the POSIX functions
typically used for setting and fetching of these values. For instance, consider
the getpwuid function (defi ned in stubs.cpp in the Bionic library):

File system permissions

32 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 32

The rights defi ned in package entries are later enforced in one of two ways.
The fi rst type of checking is done at the time of a given method invocation and
is enforced by the runtime. The second type of checking is enforced at a lower
level within the OS by a library or the kernel itself.

API Permissions

API permissions include those that are used for controlling access to high-
level functionality within the Android API/framework and, in some cases,
third-party frameworks. An example of a common API permission is
READ_PHONE_STATE, which is defi ned in the Android documentation as allowing
“read only access to phone state.” An app that requests and is subsequently
granted this permission would therefore be able to call a variety of meth-
ods related to querying phone information. This would include methods in
the TelephonyManager class, like getDeviceSof twareVersion, getDeviceId,
getDeviceId and more.

As mentioned earlier, some API permissions correspond to kernel-level enforce-
ment mechanisms. For example, being granted the INTERNET permission means
the requesting app’s UID is added as a member of the inet group (GID 3003).
Membership in this group grants the user the ability to open AF_INET and
AF_INET6 sockets, which is needed for higher-level API functionality, such as
creating an Ht tpURLConnect ion object.

In Chapter 4 we also discuss some oversights and issues with API permis-
sions and their enforcement.

File System Permissions

Android’s application sandbox is heavily supported by tight Unix fi le system
permissions. Applications’ unique UIDs and GIDs are, by default, given access
only to their respective data storage paths on the fi le system. Note the UIDs
and GIDs (in the second and third columns) in the following directory listing.
They are unique for these directories, and their permissions are such that only
those UIDs and GIDs may access the contents therein:

root@android: / # ls - l /data/data
drwxr-x--x u0_a3 u0_a3 . . . com .android.browser
drwxr-x--x u0_a4 u0_a4 . . . com .android.calculator2
drwxr-x--x u0_a5 u0_a5 . . . com .android.calendar
drwxr-x--x u0_a24 u0_a24 . . . com .android.camera
. . .
drwxr-x--x u0_a55 u0_a55 . . . com . twi t ter .android
drwxr-x--x u0_a56 u0_a56 . . . com .ubercab
drwxr-x--x u0_a53 u0_a53 . . . com .youget i tback.androidappl icat ion.virgin.
mobi le
drwxr-x--x u0_a31 u0_a31 . . . jp.co.omronsoft .openwnn

Android permissions

• Permissions are required for:

• System API calls

• Database operations (content providers)

• Inter Process Communications (send and receive
Intents)

Application’s permissions
• Extracted from the application’s manifest at install time by the

PackageManager and stored in /data/system/packages.xml

 Chapter 2 ■ Android Security Design and Architecture 31

c02.indd 01:14:22:PM 02/24/2014 Page 31

rights at the instantiation of the app’s process (such as setting supplemental
GIDs). The following snippet shows the Google Chrome package entry inside
packages.xml , including the unique userId for this app as well as the permis-
sions it requests:

<package name="com.android.chrome"
codePath="/data/app/com.android.chrome-1.apk"
nat iveLibraryPath="/data/data/com.android.chrome/ l ib"
f lags="0" f t="1422a161aa8" i t="1422a163b1a"
ut="1422a163b1a" version="1599092" userId="10082"
instal ler="com.android.vending">
<sigs count="1">
<cert index="0" />
</sigs>
<perms>
<i tem name="com.android. launcher .permission. INSTALL_SHORTCUT" />
<i tem name="android.permission.NFC" />
. . .
<i tem name="android.permission.WRITE_EXTERNAL_STORAGE" />
<i tem name="android.permission.ACCESS_COARSE_LOCATION" />
. . .
<i tem name="android.permission.CAMERA" />
<i tem name="android.permission. INTERNET" />
. . .
</perms>
</package>

The permission-to-group mappings are stored in /e tc /perm i ss ions /
platform.xml . These are used to determine supplemental group IDs to set for
the application. The following snippet shows some of these mappings:

. . .
 <permission name="android.permission. INTERNET" >
 <group gid="inet" />
 </permission>

 <permission name="android.permission.CAMERA" >
 <group gid="camera" />
 </permission>

 <permission name="android.permission.READ_LOGS" >
 <group gid="log" />
 </permission>

 <permission name="android.permission.WRITE_EXTERNAL_STORAGE" >
 <group gid="sdcard_rw" />
 </permission>
. . .

API permissions
• e.g. READ_PHONE_STATE: Read only access to

the phone state.

• An app that requires this permission would
therefore be able to call a variety of methods
related to querying the phone state

getDeviceSoftwareVersion()

getDeviceId()

IPC permissions

• e.g. CALL_PHONE: permission to start a phone call

• An application requires permissions to communicate
with another app.

Intent intent = new Intent(Intent.ACTION_CALL, Uri.parse(...));
startActivity(intent);

Content Provider
permissions

• e.g. READ_CONTACTS, WRITE_CONTACTS: read or
write access to the contacts provider.

• An application requires permissions to access a
resource at a given URI

State of the art in test
input generation for

Android

Inputs?
Android apps are highly interactive and
event driven.

UI events (clicks, longclicks, text)
System events (sms received…)
Environment

Different strategies
Random

Systematic

Model-based (static - dynamic)

Search-based algorithms

Symbolic-execution

Many useful available frameworks!

Useful Frameworks
• UI automation

• Robotium

• Espresso

• UI automator

• Static analysis

• DARE

• Dex disassemblers

• Soot and Flowdroid

Robotium

An open source test framework
Used to write black or white box tests
Tests can be executed on an Android Virtual Device (AVD) or a real device
Built on Java and Android JUnit Test Framework

Notepad with Robotium

Add#note � Save#note � Edit#note�

Robotium
public void testAddNote() throws Exception {
 solo.clickOnMenuItem("Add note");
 //Assert that NoteEditor activity is opened
 solo.assertCurrentActivity("Expected NoteEditor activity", "NoteEditor");
 //In text field 0, enter Note 1
 solo.enterText(0, "Note 1");
 solo.goBack();
 //Clicks on menu item
 solo.clickOnMenuItem("Add note");
 //In text field 0, type Note 2
 solo.typeText(0, "Note 2");
 //Go back to first activity
 solo.goBack();
 //Takes a screenshot and saves it in "/sdcard/Robotium-Screenshots/".
 solo.takeScreenshot();
 boolean expected = true;
 boolean actual = solo.searchText("Note 1") && solo.searchText("Note 2");
 //Assert that Note 1 & Note 2 are found
 assertEquals("Note 1 and/or Note 2 are not found", expected, actual);
}

UIAutomator and Espresso
• UIAutomator is another framework that allows to build

tests for user apps and system apps. (integration)

• Perfect for implementing blackbox testing
techniques.

• Provide means to inspect the layout elements in
activities.

• Espresso is another framework, more suitable for
implementing whitebox testing techniques (single app)

Code coverage with emma

ant emma debug install

Program transformation
for static analysis

Get the binary code

dexdump

dexdump
000418: 2b02 0c00 0000 |0000: packed-switch v2, 0000000c // +0000000c
00041e: 12f0 |0003: const/4 v0, #int -1 // #ff
000420: 0f00 |0004: return v0
000422: 1220 |0005: const/4 v0, #int 2 // #2
000424: 28fe |0006: goto 0004 // -0002
000426: 1250 |0007: const/4 v0, #int 5 // #5
000428: 28fc |0008: goto 0004 // -0004
00042a: 1260 |0009: const/4 v0, #int 6 // #6
00042c: 28fa |000a: goto 0004 // -0006
00042e: 0000 |000b: nop // spacer
000430: 0001 0300 faff ffff 0500 0000 0700 ... |000c: packed-switch-data (10 units)

not really easy to understand

Android app analysis

jimple

java
bytecode

smali

dex

intermediate
representations

analysis
framework

soot

wala

asm
transformation

component

DEX disassemblers
• Other DEX disassembles can produce “more readable”

outputs

• Dedexer: turns the DEX format into an “assembly like”
format. Influenced by Jasmin syntax but with Dalvik
opcodes

• Smali/baksmali: similar to dedexer, but well maintained
(and acts as assembler as well)

• Androguard: written in python. Provides some basic
static analyses (check for similarities, navigate through
cfgs, visualization)

Smali example
class name, also determines file path when dumped
.class public Lcom/packageName/example;

inherits from Object (could be activity, view, etc.)
note class structure is L<class path="">;
.super Ljava/lang/Object;

these are class instance variables
.field private someString:Ljava/lang/String;

finals are not actually used directly, because references
to them are replaced by the value itself
primitive cheat sheet:
V - void, B - byte, S - short, C - char, I - int
J - long (uses two registers), F - float, D - double
.field public final someInt:I # the :I means integer
.field public final someBool:Z # the :Z means boolean

Do you see how to make arrays?
.field public final someCharArray:[C
.field private someStringArray:[Ljava/lang/String;

this is the <init> of the constructor
it calls the <init> of it's super, which in this case
is Ljava/lang/Object; as you can see at the top
the parameter list reads: ZLjava/lang/String;I
Z - boolean
Ljava/lang/String; - java String object
(semi-colon after non-primitive data types)
I - integer

 # these are not always present and are usuaully taken
 # out by optimization/obfuscation but they tell us
 # the names of Z, Ljava/lang/String; and I before
 # when it was in Java
 .parameter "someBool"
 .parameter "someInt"
 .parameter "exampleString"

 # the .prologue and .line directives can be mostly ignored
 # sometimes line numbers are useful for debugging errors
 .prologue
 .line 10

 # p0 means parameter 0
 # p0, in this case, is like "this" from a java class.
 # we are calling the constructor of our mother class.
 # what would p1 be?
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

 # store string in v0
 const-string v0, "i will not fear. fear is the mind-killer."

 # store 0xF hex value in v0 (or 15 in base 10)
 # this destroys previous value string in v0
 # variables do not have types they are just registers
 # for storing any type of value.
 # hexadecimal is base 15 is used in all machine languages
 # you normally use base 10
 # read up on it:
 # http://en.wikipedia.org/wiki/Hexadecimal

Dare

• Retargeting android apps to Java bytecode

• Motivation (back in 2012): Reuse analyses that
were already implemented on top of frameworks
such as WALA and SOOT

• Aim: produce verifiable Java bytecode, which
ensures it is analyzable by these frameworks.

Retargeting challenges
• Type systems are very different in DVM and JVM:

• Primitive assignments: in Dalvik they specify only the width
of the constant (32 vs 64 bits). No difference between float
and int.

• Array load/store instructions: DVM has array-specific load
and store instructions for int and float arrays (a-get aput) and
for long and double (aget-wide aput-wide). Type ambiguity
again

• Object references: Java bytecode uses null reference to
detect undefined refs. Dalvik instead uses 0 to represent both
number 0 and null refs.

DARE

• Works well in practice:

• ~262,110 classes (top 50 apps of each of the 22
categories) —> successful retargeting for
99.09% of apps

Retargeting Android Applications to Java Bytecode
FSE 2012

Dexpler
• Converts Dalvik bytecode to Jimple intermediate

representation.

• Jimple is the representation used in the Soot
framework

• Built on top of dedexer

• Uses typing inference algorithm of soot (but deals
with typing ambiguities)

Converting Android Dalvik Bytecode to Jimple for Static Analysis with Soot — SOAP12

JimpleGolden mean: Jimple IR

26

	 void foo() {
	 	 double d1 = 3.0;
	 	 double d2 = 2.0;
	 	 int i1 = (int) (d1*d2);
	 	 bar(this,i1);
	 }

 void foo()
 {
 Main this;
 double d1, d2, temp$0;
 int i1;

 this := @this: Main;
 d1 = 3.0;
 d2 = 2.0;
 temp$0 = d1 * d2;
 i1 = (int) temp$0;
 virtualinvoke this.<Main: void bar(Main,int)>(this, i1);
 return;
 }

Challenges of the Android
life cycle

1 public class LeakageApp extends Activity{

2 private User user = null;

3 protected void onRestart (){

4 EditText usernameText =

(EditText)findViewById(R.id.username);

5 EditText passwordText =

(EditText)findViewById(R.id.pwdString);

6 String uname = usernameText.toString ();

7 String pwd = passwordText.toString ();

8 if(! uname.isEmpty () && !pwd.isEmpty ())

9 this.user = new User(uname , pwd);

10 }

11 // Callback method in xml file

12 public void sendMessage(View view){

13 if(user == null) return;

14 Password pwd = user.getpwd ();

15 String pwdString = pwd.getPassword ();

16 String obfPwd = "";

17 //must track primitives:

18 for(char c : pwdString.toCharArray ())

19 obfPwd += c + "_"; // String concat.

20
21 String message = "User: " +

22 user.getName () + " | Pwd: " + obfPwd;

23 SmsManager sms = SmsManager.getDefault ();

24 sms.sendTextMessage("+44 020 7321 0905",

25 null , message , null , null);

26 }

Listing 1: Example Android Application

it ignores the operations’ semantics) and, as we found, is often
forbiddingly expensive in practice.

Attacker model FLOWDROID can be used to detect data flows
in general, no matter whether they are caused by carelessness or
malicious intent. For malicious cases, we assume the following
attacker model. The attacker may supply an app with arbitrary
malicious Dalvik bytecode. Typically, the attacker’s goal would be
to leak private data through a dangerously broad set of permissions
granted by the user [4]. FLOWDROID makes sound assumptions
on the installation environment and app inputs, meaning that the
attacker is free to tamper with those as well. FLOWDROID does
assume, however, that the attacker has no way of circumventing
the security measures of the Android platform or exploiting side
channels. Further, we assume that the attacker does not use implicit
flows [20] to disguise data leaks. Given the current kind of available
malware, this is a very reasonable assumption.

3. Precise Modelling of Lifecycle
In the following we explain FLOWDROID’s precise modeling of
the lifecycle, including entry points, and asynchronously executing
components and callbacks.

Multiple entry points Unlike Java programs, Android applications
do not have a main method. Apps instead comprise many entry
points, i.e., methods that are implicitly called by the Android frame-
work. The Android operating system defines a complete lifecycle
for all components in an application. There are four different kinds
of components an app developer can define: activities are single
focused user actions, services perform background tasks, content
providers define a database-like storage, and broadcast receivers
listen for global events. All these components are implemented by
deriving a custom class from a predefined operating system class,
registering it in the AndroidManifest.xml file and overwriting
the lifecycle methods. The Android framework calls these methods

to start or stop the component, or to pause or resume it, depending
on environment needs. For instance, it can stop an application be-
cause of memory depletion, and later restart it when the user returns
to it [17]. In result, when constructing a call graph, Android analy-
ses cannot simply start by inspecting a predefined “main” method.
Instead, all possible transitions in the Android lifecycle must be
modeled precisely. To cope with this problem, FLOWDROID con-
structs a custom dummy main method emulating the lifecycle. In the
following we explain how this method is constructed.

Asynchronously executing components An application can con-
tain multiple components, e.g., three activities and one service. Al-
though the activities run sequentially, one cannot pre-determine their
order. One activity could, for instance, be the main one initially visi-
ble to the user and then launch either one of the others depending on
user input. Services run as parallel background tasks. FLOWDROID
models this execution by assuming that all components (activities,
services, etc.) inside an application can run in an arbitrary sequential
order (including repetition). Some static analyses are path sensi-
tive, i.e., consider each possible program path separately. In such
cases, considering all possible orderings would be very expensive.
FLOWDROID bases its analysis on IFDS [32], an analysis frame-
work which is not path sensitive and instead joins analysis results
immediately at any control-flow merge point. FLOWDROID can thus
generate and efficiently analyze a dummy main method in which
every order of individual component lifecycles and callbacks is
possible; it does not need to traverse all possible paths.

Callbacks The Android operating system allows applications to
register callbacks for various types of information, e.g., location
updates or UI interactions. FLOWDROID models these callbacks in
its dummy main method, for instance to recognize cases where an
application stores the location data that the framework passes to the
callback as a parameter, and later sends this data to the Internet when
the activity is stopped. The order in which callbacks are invoked
cannot generally be predicted, which is why FLOWDROID assumes
that all callbacks can be invoked in any possible order. However,
callbacks can only happen while the parent component (e.g. activity)
is running. For precision, FLOWDROID thus associates components
(activities, services, etc.) with the callbacks they register. An activity
may, for instance, register callbacks that get invoked when a button
is pressed. The respective callback handler would then have to be
analyzed between the onResume() and onPause() events of this
activity only.

There are two different ways to register callback handlers on the
Android platform. Firstly, callbacks can be defined declaratively in
the XML files of an activity. Alternatively, they can also be registered
imperatively using well-known calls to specific system methods.
FLOWDROID supports both ways. Additionally, for malware there
is the risk that an attacker registers undocumented callbacks by
overwriting methods of the Android infrastructure, some of which
could even be called by native code. FLOWDROID recognizes such
overwritten methods, handling them similar to normal callback
handlers such as button clicks.

For finding callbacks registered in the application code, FLOW-
DROID first computes one call graph per component, starting at the
lifecycle methods (onCreate(), onStop(), etc.) implemented in the
respective component class. This call graph is then used to scan for
calls to Android system methods that use one of the well-known
callback interfaces as a formal parameter type. Afterwards, the call
graph is incrementally extended to include these newly discovered
callbacks, and the scan is run again since callback handlers are free
to register new callbacks on their own, potentially requiring FLOW-
DROID to re-extend the call graph and re-analyze until a fixed point
it reached. While this method is more expensive than just scanning
for classes implementing the callback interfaces, it delivers a more

���

read pwd from text field
when the app restarts

when the user presses a
button the pwd is sent via sms

Important to model app
life cycle and callbacks!!

Activity life cycle

Automated testing in
Android

Automated Testi Input Generation for Android: Are
We There Yet? — under submission
http://arxiv.org/abs/1503.07217

http://arxiv.org/abs/1503.07217

Fuzzer

Fuzzing

UNIX utilities

“ab’d&gfdfggg” 25%–33%grep • sh • sed …

…

Send "!o%888888888f" as command to the csh command-line shell

Invoke this with string ="%888888888f":

char *string = …
printf(string);

…and made the shell hang

Fuzzing in Android

• Mildly widely used so far.

• Fuzzing mainly focused on IPC

Null intent fuzzer

• Very simple fuzzer: Null intents

• Create null intents and see whether the
broadcast receivers registered to those intents
crash.

Null intent fuzzer
• Identify targets:

• thanks to PackageManager

• Generate intents

• Intent i = new Intent()

• Deliver inputs

• sendBroadcast(i)

• Monitor

• logcat.. —> NullPointerExceptions

Null intent fuzzer

“can either fuzz a single component or all components. It works
well on Broadcast receivers, and average on Services”.

Only single Activities can be fuzzed.

Runs on device as an app,
opensource

Detected a serious bug in a google
package that makes the phone hang

Intent fuzzer

• Works exactly like null intent fuzzer

• Static analysis component that can detect the
expected structure of an intent.

• Works with inputs of primitive types

Intent Fuzzer: Crafting intents of death
WODA+PERTEA 2014

DroidFuzzer

• It focuses on generating inputs for activities that
accept MIME data types (AVI, MP3, HTML files)

• It can make video player apps crash

• Tool not available

DroidFuzzer: Fuzzing the Android apps with
Intent-filter tag — MoMM 2013

Automated GUI
testing in Android

Randomized GUI testing

Monkey
Tests Android apps at the GUI level
Randomly generates UI events

Runs on emulator or real device

$ adb shell monkey

Dynodroid
• Executor executes the event in the current state to yield a new

emulator state (that overwrites the current state)

• Observer computes which events are relevant in the new state

• Selector selects one of the events to execute

Dynodroid

• How to generate relevant inputs?

• First generate it randomly but… It lets users
pause the automated crawling and let them
provide an input.

Dynodroid: An Input Generation System for Android Apps — ESEC/FSE13

Model-based techniques

1� 2�

3�

5a�

4�

5c� 5d�

5b�

00�

10�

01�

Calculate0

Menu0 Menu0

About0

Se6ngs0

a10

a10

a20a20
11�

GUIRipper

• Dynamically builds FSM model
• DFS exploration strategy
• At each step it keeps list of relevant UI events

Allows users to create snapshots
and provide custom inputs

Using GUI Ripping for Automated Testing of Android Applications — ASE12

Rotate Press Menu Click Refresh Click New Post Click Pages

Click About Click Add Account

Click
Edit

Crash

…

…

Click Save

……

Orbit GUI testing
Android''
Apps'

Greybox approach

Statically extracts all the possible set of events
supported by the GUI on an app.

Dynamically exercises these events on the app.

 A Grey-Box Approach for Automated GUI-Model Generation of Mobile Applications — FASE13

Proposed GUI model
Visual Observable State

Composition of the state

Model
 A finite-state machine over visual observable states with

the user actions constituting the transitions between
these states

States

�5b�� �5d��

These two
states differ

Model for Simple
TippyTipper

3�

5a�

4�

5c� 5d�

5b�

00�

10�

01�

Menu. Menu.

About.

Se3ngs.

a1.

a1.

a2.a2.

a1:$Toggle.exclude.tax.rate.op<on..
a2:.Toggle.round.up.op<on...

11�

�1�� �2�� �4��

�3��
�5��

�3��

Action Inference

R.Id.java(View(btn_delete(=(findViewById(R.id.btn_delete);(
(
(
Btn_delete.setOnClickListener(new(onClickListener()({(
((((((public(void(onClick(View(v)({(
(((((((((removeBillAmount();(
(((((((((FlurryAgent.onEvent(“Delete(Button”);(
((((((}(
(((});(
(
(
Btn_delete.setOnLongClickListener(new(onLongClickListener()({(
((((((public(void(onLongClick(View(v)({(
(((((((((clearBillAmount();(
(((((((((return(true;(
((((((}(
(((});(

…(
…(

TippyTipper.java(

Inference:(Widget'btn_delete'with'Id)=)0x7f0000a'
supports'ac1ons'click)and'longClick)

ORBIT: static analysis
• Identify components on which to fire an event (e.g. longClick):

• build call graph to find methods that call
setOnLongClickListerer

• locate statement in the caller method and get the object
the listener is registered to.

• backward analysis to get to the object initialization to get
ID

• add ID+action to list of actions to be triggered dynamically

Implementation

FwdCrawl(Algorithm(

Robo2um�

Android(Run2me(

Dynamic(Crawler(

Ac2on(Detector(

WALA(

Intent(Passing(Logic(

Sub?CallGraph(

Par2al(Connected((
Call(Graph(

Inference(Algorithm(

Ac2on(Mapping(
Android''
AUT'

so
ur
ce
'c
od

e'

ORBIT'

GUI(Model(

de
pl
oy
'

Automatic Android App
explorer (A3E)

• Does not require access to source code

• Targeted and Depth-first visiting strategy

• Higher level of abstraction (1 activity, 1 state)

• Targeted strategy uses static analysis to
compute all the activities as entry points (to
analyse all of them)

Targeted and Depth-first Exploration for Systematic Testing of Android Apps — OOPSLA13

Swifthand

• Dynamic model of the app. Exploration algorithm
aims to reduce the number of restarts as much as
possible.

• limited to touching and scrolling events

Guided GUI Testing of Android Apps with Minimal Restart and Approximate Learning — OOPSLA13

PUMA

• Framework that provides a basic monkey-like
implementation.

• provides a model-based representation of an app

• possible to implement different levels of abstraction

PUMA: Programmable UI-Automation for Large Scale Dynamic Analysis of Mobile Apps — Mobysys14

Limitation of model-based
strategy?

• Changes in internal states not represented in the
model

• Problem for services

EvoDroid
• Evodroid: Uses evolutionary algorithms to guide the

test-case generation towards unexplored code

• individuals as sequences of test inputs

• mutation and crossover operators to recombine
inputs

• tool not available

EvoDroid: Segmented Evolutionary Testing of Android Apps — FSE14

ACTEve

• Concolic testing tool that symbolically tracks events
from their generation up to the point where they are
handled in the app.

• Works both on system and UI events

Automated Concolic Testing of Smartphone Apps — FSE12

JPF-Android

• extends JPF, the popular model-checking tool for
Java.

• aims to explore all paths to detect deadlocks and
runtime exceptions

• limitation: assumes that user provides the list of
inputs.

Execution and Property Specifications for JPF-Android — JPFWorkshop14

Summary of tools

Aim of the study

Ease of use Android framework
compatibility

Effectiveness of
exploration strategy

Fault detection ability

Automated Test input Generation for Android:
Are we there yet? S. Roy Choudhary, A.Gorla, A.Orso - under submission

Benchmark

F-droid
68 apps

50 from Dynodroid
3 from GUIRipper
5 from ACTEve

10 from Swifthand

UbuntuGingerbread
 (vs. 10)

Ice-cream
sandwich
 (vs. 16)

Kitkat
(vs. 19)

10 runs of 1 hour for each tool on each app

Coverage
LogcatAPPS

Ubuntu

Ease of use and
compatibility

Exploration Strategy
Effectiveness

Progressive coverage

Fault detection ability

Challenges and
Opportunities

• few tools support the generation of system events.

• which events to trigger and when?

• static analyses can be expensive, but may be useful to
understand which events to trigger

Syst
em events!

Challenges and
Opportunities

• Dynodroid, GUIripper only tools that consider this

• Very basic. Can we do better?

Manually provided inputs

Challenges and
Opportunities

• e.g. Minimize restarts

• algorithm focused only on that is not enough.
However, this is an interesting idea. Should be
combined with other heuristics

exploration strategy

Challenges and
Opportunities

• e.g. Multiple starting states

• GUIRipper can support this, but it is very
basic. Has to be done manually.

exploration strategy

Challenges and
Opportunities

• Dynodroid and A3E can clean state between
runs (uninstalling app and clear data)

use our infrastructure!

avoid side effects

across runs

Challenges and
Opportunities

• avoid disruptive effects of some operations

Sandboxing

Challenges and
Opportunities

• not easy to see failure reports.

• not easy to reproduce failures.

• debugging???

• NO tool is good at this.

Reproducible test cases

Challenges and
Opportunities

• Few commercial tools are dealing with problem

• Basic solutions (lots of manual work)

X

Fragmentation problem

