Challenges and
Opportunities in Mobile
lTesting

Alessandra Gorla
IMDEA Software Institute, Madrid, Spain

Contextual Integration Testing of Classes*

Giovanni Denaro!, Alessandra Gorla?, and Mauro Pezze!»?
! University of Milano-Bicocca, Dipartimento di Informatica, Sistemistica e
Comunicazione, Via Bicocca degli Arcimboldi 8, 20126, Milano, Italy
denaro@disco.unimib.it
2 University of Lugano, Faculty of Informatics
via Buffi 13, 6900, Lugano, Switzerland
alessandra.gorla@lu.unisi.ch, mauro.pezzeQunisi.ch

Abstract. This paper tackles the problem of structural integration test-
ing of stateful classes. Previous work on structural testing of object-
oriented software exploits data flow analysis to derive test requirements
for class testing and defines contextual def-use associations to charac-
terize inter-method relations. Non-contextual data flow testing of classes
works well for unit testing, but not for integration testing, since it misses
definitions and uses when properly encapsulated. Contextual data flow
analysis approaches investigated so far either do not focus on state de-
pendent behavior, or have limited applicability due to high complexity.
This paper proposes an efficient structural technique based on contex-
tual data flow analysis to test state-dependent behavior of classes that
aggregate other classes as part of their state.

1 Introduction

characterized by classes and objects, which enforce

ording to their internal state. Object-oriented fea-
practice, and reduce the impact of some critical
those that derive from excessive use of non-local

bed access to hidden details. However, they intro-

3.5¢. and M.Sc. in Milano-
Data-flow testing of Java Applications

INtro

Bicocca, ltaly

Search-based Data-flow Test Generation

Mattia Vivanti
University of Lugano
Lugano, Switzerland
mattia.vivanti@usi.ch

Abstract—Coverage criteria based on data-flow have long been
discussed in the literature, yet to date they are still of surprising
little practical relevance. This is in part because 1) manually
writing a unit test for a data-flow aspect is more challenging than
writing a unit test that simply covers a branch or statement, 2)
there is a lack of tools to support data-flow testing, and 3) there is
a lack of empirical evidence on how well data-flow testing scales
in practice. To overcome these problems, we present 1) a search-
based technique to automatically generate unit tests for data-flow
criteria, 2) an impl ion of this ique in the EVOSUITE
test generation tool, and 3) a large empirical study applying this
tool to the SF100 corpus of 100 open source Java projects. On
average, the number of coverage objectives is three time: high
as for branch coverage. However, the level of coverage achieved
by EVOSUITE is comparable to other criteria, and the increase in
size is only 15%, leading to higher mutation scores. These results
counter the common assumption that data-flow testing does not
scale, and should help to re-establish data-flow testing as a viable
alternative in practice.

Keywords-data-flow coverage, search based testing, unit testing

1. INTRODUCTION
Systematic test generation is often driven by coverage
criteria based on structural program entities such as statements
or branches. In contrast to such structural criteria, data-flow
criteria focus on the data-flow interactions within or across

ria is that if a value
in another, then it is
these statements to

es showed that data-
ect-oriented code [4],
b usually shorter than

-procedural logic, for
ded.

Andre Mis - Alessandra Gorla
Saarland University
Saarbriicken, Germany
{amis,gorla} @cs.uni-saarland.de

Gordon Fraser
University of Sheffield
Sheffield, UK
Gordon.Fraser @sheffield.ac.uk

statement [8]. This emphasizes the importance of automated
test generation tools — however, most existing systematic test
generation tools target either statement or branch coverage.

A further problem preventing wide-spread adoption of data-
flow criteria is a lack of understanding of how well they scale
to real world applications. Intuitively, data-flow criteria result
in more test objectives to cover, and consequently also more
test cases, but the number of infeasible test objectives (i.e.,
infeasible paths from definitions to uses of the same variable)
is also expected to be larger than for simpler structural criteria.
However, there simply is not sufficient empirical evidence to
decide whether this is a show-stopper in adoption of data-flow
testing criteria, or just a minor side effect.

To address these problems, in this paper we present a data-
flow test generation technique implemented as an extension
of the search-based EVOSUITE [11] tool, which we applied
to 100 randomly selected open source Java projects. In detail,
the contributions of this paper are as follows:

o We present a search-based technique to generate unit
tests for data-flow criteria. This technique uses a genetic
algorithm for both, the classical approach of targeting one
test objective at a time, as well as the alternative approach
of targeting all test objectives at the same time.

We present an implementation of this technique, extend-
ing the EVOSUITE test generation tool to generate test
suites targeting all definition-use pairs.

We present the results of a large empirical study on
open source Java applications (the SF100 corpus of
classes [12]) in order to shed light on how data-flow
testing scales and compares to other criteria in practice.

The results of our experiments indicate that data-flow testing
is a viable alternative and does not suffer from scalabilitv

INtro

D in Informatics in Lugano, Switzerland

Automatic Workarounds for Web Applications

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicold Perino, and Mauro Pezzé
Faculty of Informatics

Automatic Workarounds: Exploiing the Intricsic Redundancy of Web
Agplications

TOSEM 2015/

Automatic Recovery from Runtime Failures

Antonio Carzaniga* Alessandra Gorla' Andrea Mattavelli* ~ Nicold Perino* Mauro Pezze*

*University of Lugano
Faculty of Informatics
Lugano, Switzerland

Abstract—We present a i to make icati re-
silient to failures. This i is il to intain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic r 'y of those
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the ion flow of the ication and
without restarting its components. We demonstrate and evaluate
this techni on four mid-si icati and two popular
libraries of reusable components affected by real and <eeded
faults. In these cases the i
the application fully functional with helween 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,

fSaarland University
Computer Science
Saarbriicken, Germany

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation

t be avoided by executing an alternative variant of the
e operation. The automatic selection and execution of a

fect variant (to avoid a failure of a faulty one) is what we
to as an automatic workaround.
prior work we have developed this notion of au-
htic workarounds by showing experimentally that such

arounds exist and can be effective in Web applica-
[13]. We initially focused on Web applications because

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga
University of Lugano
. Switzerland .
antonio.carzaniga@usi.ch

Alessandra Gorla
Saarland University

Andrea Mattavelli
University of Lugano

Alberto Goffi
University of Lugano
tzerland
alberto goffl@u3| ch

Mauro Pezzé
University of Lugano

Germany Switzerland Switzerland

gorla@st.cs.uni-
saarland.de

ABSTRACT

Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal peci-

fons are available, it might be possi
procedures derived from those
technique that is based on a [uxm uf apeuhcatlun bul also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are different. Our experience
in this and previous work indicates that this redundancy
s and is easily documented. We then generate oracles by
hecking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of ci ‘hecking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic generation tech-
niques, can be 7 effective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors

andrea.mattavelli@usi.ch University of Milano-Bicocca

taly
mauro.pezze@usi.ch

1. INTRODUCTION

Test oracles discriminate successful from failing executions
Good oracles combine simplicity, generality,
and accur Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing rh(software system into the problem of testing
r should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for (Xdl!lp](‘ JUnit
assertions.! Such input-specific oracles are usually simple
and effective but they lack generality. Writing such oracles for
large test suites and maintaining them through the e
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.

It is possible to also generate oracles automatical
though research on test automation has focused mos
pporting the testing process, creating scaffolding, managing

of test cas

ICSE 2014

Laression test suites, and ing and executing test
ses, but much less on generating oracles [7, 27]. Most of
e work on the automatic generation of oracles is based on

bme form of specification or model. Such oracles are very

bneric, since they simply check that the behavior of the

/stem is consistent with the prescribed model. However,
eir applicability and quality depend on the availability
1d completeness of the models. For example, specification-

- cod oracles are extremelv effective in the presence of precise

INtro

Postdoc Saarland University, Germany

Malware detection in Android applications

Checking App Behavior Against App Descriptions Mining Apps for Abnormal Usage of Sensitive Data Search-Based Security Testing of Web Applications
Viedi Avdusio® Koocwss Kammeon®, Asanto Gorly®, Astes Zaler®

Nevea Ant', Skopined Ractoda’, and B2 Baddea™
by CININA Seftwaw Mannae TU Drwsad I rasshater 57T
Madrud Spun Dursmnalt, Geomany Dosmssalt, Germany

Alessardea Com
Santand Urveer iy
Saartrichen. Garrary
o uni
saarland de

Ancroas Zoler
Saarard Lxaarsty
Saxtricker, Gerrary

e

Alessandra Gorla - llaria Tavecchia- - Florian Gross - Andreas Zeller Jutan Thoed

Saarland University
Saarbriicken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

B acrtand Un
Savbrmtom Gomany

SaacrtrOcsan, Qormsy
srthom@stud un-
saa“ard de

ABSTRACT

How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware

Weather
“Weather", T

B (Mg

"Theme" Theme;

2. Topics 3. Clusters

kL I
ettt Baeter b Bl salaioms appe e eaiie dee
N TR —
Bt L0 hendgn At appi e b T S S e
Manlie marien, and egan D D aguied D Send
e L L T
e Snn ool 99 0 & vl sember of gl el (8 o
I e e Ll b e L L
B e e L o
Uhtr whmrwd daks Bew wnd (4] malichoms apgn cun e bontied
by Ol hanrmnd detn Bow s, vt egeiring S
iy gt B o avalumien, Sar WLATLOW posbete
vy et BANS of 8 el maluary, and SON o
et bt babamg mom bl Aebe

patterns. Figes 11 Walhass fugin pags To bppmas suthan
. . . Most cusing malwam Jowoues work AepecTeey BT — (57 PrmC— Sioodiew, sedar " OF 1nl © oo semr sans, sl oo
Categories and Subject Descriptors B e e T e e Ay + e 008 PP i) pamsesod

D.4.6 [Security and Protection]: Invasive software

General Terms

Internet Access-Location Internet Access-Location Send-SMS

4. Used APIs 5. Outliers

b Sanh puteran we eilhar b ghen eaplaidy
"Trat csevengrs st soly be sent ey s’y commnt™\. o

lind lphiotly Som sesidien of kaown maleam (“Thns w9

Aoy b0 b gt of e TOS0 e) 1T 9 vl

CMEAs, DoemdST I (om s Sa%N e et ftam
heot deabww (2 Tabie 1 dwwn B 1o Sows
aw By b

Slheiving ol divie D 0

P apria

Categories and Sobjpect Deacri ptonry

Tomilng sonl Dndaspubng Towing

Security y &%oret bom Laowe madear, Sk, s Wih srver Do Seve Ao sy oy secomeson for bemgs ,
Figure 1: Detecting applications with unadvertised behavior. v &0oictim von ol 2) ¢ s . '
ek oo, fwdermoes, dowisid Goce ek ot avy of ' G
Keywords Starting from a collection of “good” apps (1), we identify their o B sarl, o Bt ssarsely Wasligen B e e .‘;. P T = SN S g———— Generat Termmm ¢ .
description topics (2) to form clusters of related apps (3). For o N - Terags” - X i . o
Android, malware detection, description analysis, clustering each cluster, we identify the sentitive APIs used (4), and can e accest %0 & weflicinolly lage et o WP e Ty Wameprr e lopieele o Thee, dentid
cluster, ! y S S us 4 ek » N Rl BN Wk by B Glay aa sommaly--oet ooy hocasw & Day ¢ Maler %0 Loowe
then identify outliers that use APIs that are uncommon for that Keywords ' '

1. INTRODUCTION

ICSE 2014

cluster (5).

e An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

e An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

SER mapent W akaieg eduan, Wt pelir g i Ay

Salews. Do i Palta ke bevmesi By Lais Cows wv Aisimiler

o wh T
faer it o ool callod MeLeLow’ whal evenagn

O e

ot Sownd o ey

L
THT O ety

| 3

mose (N
v w) wrasne Andnal s

Avgiors, amod oo e dee fow of bonign PL. W
atclly Sag e IR sepoons fameos. Te By bow
Dam bedige. w0 TwL i be e Bonl apguonh b musivaly

vl tnws bw pbwrre o “erend Ovte B

o oo TefETES v NWLT Tl ende PCtar el

ki

et

SBST 2014

Wb huse Soghn winbe, saniing seedt bom

N

P! o of O app -

under

submission}=:

submittec

to |

Interested In internships
short VISItS
giving talks??

&5

@20 N\

https://www.software.imdea.org/~alessandra.gorla

alessandra.gorla@imdea.org

About this talk

* |ntro to Android
e State of the art in Android testing

e open challenges and opportunities ahead

The mobile market ana
the Android ecosystem

578K

IPhones sold per day

262K
i!i I0S devices
371K '
Babies born per day
/4 /00K

Android devices
activated per day

200K

Nokia smartphones

The growth of the mobile
market Is Impressive

14 3K

Blackberry devices

http://www.lukew.com/

Moblile market

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

S0%
80% /\/A\// _____——
70%

60% 7/

50%

40%

30%

10%
0% T T T T T T ﬁ ! — |

" 47 e % v %) D g Vv %)

o? o
v NV & o &

Source: IDC, May 2015

Android e=i0Q§ ===\\indows Phone ====BlackBerry 05 == Qthers

Android history

2009 | \// ~..z — Q

Cupcake Donut Eclair Froyo Gingerbread
Android 1.5 Android 1.6 Android 2.0/2.1 Android 2.2.x Android 2.3.x

s @ g

Honeycomb IceCream Sandwich Jelly Bean KitKat Lollipop
Andrmd 3.x Android 4.0.x Android 4.1.x Android 4.4.x Android 5.0

Androld devices

Release adoption

100% 100%
Android version
90% 90% -
m15 Cupcake
m16 Donut
80% i 80% w20 Eclair
m201 Eclair
70% 70% m21 Eclair
m22 Froyo
W 23-23.2 Gingerbread
0% 00% 5233237 Gingerbread
3.0 Honeycomb
50% 50% W31 Honeycomb
m3.2 Honeycomb
. o, M40-402 ko
™4.03-404 S5 Cleam
‘ w41 Jelly Bean
30% ~ T £ 0 30% m42 Jelly Bean
ma3 Jelly Bean
20% 200 W44 KitKat
mS5.0 Lollipop
10% e = : — - : e Lollipop
O%QQ.\Q.@.@QQ\Q\:\-\\\"\\\\\\"L'L'L.Q.Q.{L’b@.{b{&ﬂ@x\.\\\\;\\’%‘\‘5.@0%
T P R S S N e S T e e S e T N T T S SSS

\,v\ ,6\ ".\'\ b\'\ %\\v \Q\\’ \,‘5\ ,.6\ ‘\"v Q}\' ®\r \QQ' '\,6\« ,.6\ \\'\' 6\\: %Q: \9\\ 'OS\ ,\)\' \\\r bQ: %\‘\- \9\‘\ \’\}\' ,ﬁ\v ‘(\ b\‘\- %(\ ‘\Q\'\ \'\)\ ,& ‘(\, b\’\-

Open source culture

* Android operating system is build upon many
different open source components.

e |ibraries
e | Inux kernel
e user interface

e applications

.. but

* [here are also closed source components
* pboot loaders
e peripheral firmware
e radio components
 Applications

 And changes in Android are not made available to the
public iImmediately

Androld stakeholders

[Google J All levels
System-on-Chip |

[Manufacturers] Kernel, Radio

[OEMs } All levels

Developers

 Developers may contribute to the Android platform.

e Code review process by Google before including
external code.

* Most of external developers contribute by writing apps
(through SDK and APIs)

e Automated analysis before publishing an app In the
store.

e Ranking and report system for further quality

Ecosystem complexity

* fragmentation in hardware

e fragmentation in software

e customization

|ssues for quality assurance”?

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Q
&

>
o

S

Q\

T
> S
»
$

w

QA issues

100%

80%

70%

60%

50%

40%

30%

10%

0%

Android version

11
15
16
20
m201
m21
m22
m23-232
233237
3.0
w31
m32
m4.0-4.02
W403-404
ma1
ma2
mas3
maa
50
W51

~4 OS releases

Cupcake
Donut
Eclair

Eclair

Eclair

Froyo
Gingerbread
Gingerbread
Honeycomb
Honeycomb
Honeycomb
Ice Cream
Sandwich
Ice Cream
Sandwich
Jelly Bean
Jelly Bean
Jelly Bean
KitKat
Lollipop
Lollipop

+1000 devices

SEcurity 1Issues

Google *

Device

manufacturers

7
J’r
pdd

__‘§AT&T \f/r T« Mobile-
6 e Elltel rocusmoslie

§ 1 4 \[
BeEEE NETIO moyo

o TOCFONE cricket
warehess

Carriers

* Updates might take a long time before being
propagated to carrier specitic devices.

e Security issues may be fixed after a long time (or

even never).

Security issues are often
specific to hw and sw
configurations.

Fragmentation makes it hard
to develop security attacks
that are valid for most
devices.

Security issues detected in
the main Android components
might take a long time before
they are fixed on all devices

Update mechanisms

Updates to Android are pushed to Nexus phones
directly by Google. Days-weeks between security issue
report and pushing a fix.

For other devices it takes longer. Months-years or even
never.

Almost no back-porting (i.e. applying a fix to older
versions of the system).

Updates to apps are easier. Done directly by app
developers through the Google store.

Androld architecture

Anadrold components

Stock Android Apps
Launcher2 Phone AlarmClock
Email Settings Camera
Galley Mms DeskClock Your Apps/Market Apps
Calendar Browser Bluetooth
Calculator ~ Contacts
Ap o ——— Y
API
android.”
Binder ---------------------"---"-"----
System Services java.™
Power Manager ~ Mount Service Status Bar Manager (Apache Harmony)
Activity Manager Notification Manager Sensor Service
Package Manager Location Manager Window Manager
Battery Manager Surface Flinger
Dalvik/Android Runtime/Zygote
NI oo
Libraries Hardware : :
Bionic/OpenGL/WebKit/... Abstraction Layer Helliye Desmels Init/Toolbox
Linux Kernel
Wakelocks/Lowmem/Binder/Ashmem/Logger/RAM Console/...

Dalvik VM

e Specifically designed to provide an efticient
abstraction layer to the underlying OS

* register-nased VM

* Interprets Dalvik Executable (DEX bytecode
format)

* relies on functionalities provided by a number of
supporting native code libraries

Android Runlime

* although..

* Google recently introduce a new runtime
environment: ART (Android RunTime)

* experimental in Android 4.4 (KitKat)
e default in Android Lollipop

* main advantage: performance. Instead of Just In
Time compiler, it now compiles Ahead Of Time

Android Runtime

The life of an APK R

Native Code
, zIp
Source > e ~ Dex File ~ APK PaCkage
| install
Resources & i t I I
Dex File Native Code INSia
' dexopt | | dex2oat dex & native code *
quickened dex pEmm——— ;
. Odex .. z
File ELF File ’ =
v 8 -
I) U v Libraries

Dalvik Native
JIT

Android Runlime

Performance Boosting Thing, realized

Art vs. Dalvik: CPU Performance (Nexus 5)

Il Dalvik
2.4 B Art

Normalized to Dalvik

/ygote

 Daemon responsible of launching apps.

* Forks a new process for each app.

User-space native code
components

* |nclude system services and libraries

* they communicate with the kernel-level services
and drivers.

* facilitate the low-level operations

L INnuxX Kernel

Android made numerous additions and changes to
the kernel.

porovide additional functionalities such as
* camera access
o Wi-fi

* pbinder driver (for inter-processes communication)

Main components of an
Android app

v L RvV2013
v L res
» || drawable-hdpi
» (] drawable-mdpi
» || drawable-xhdpi
» | | drawable-xxhdpi
v

.. layout
T activity_rv2013.xm| € Layout-File
» L menu
v (] META-INF =
CERT.RSA :
\ CERT SE ~ Signatures
T MANIFEST.MF____
"~ AndroidManifest.xm| € Meta-Information
" classes.dex € Bytecode

" resources.arsc € Compiled Resources

APK buillding process

Android
Project

Compilation and
Packaging

Android Package (.apk)
resources
.arsc
uncompiled
resources
AndroidManifest.xml

Device or
Emulator

Signing

Source: http://developer.android.com/tools/building/index.html

IOV B W N -

<7xmlL version="1.
~<manifest xmlns:a

Android Manitest

" encoaing="utr-§" >

roid="http://schemas.android. com/apk/res/android”
package="com. novaapps. findevents" android:versionCode="1"

android:versionName="1.0"
android:installLocation="prefereExternal">
<uses-sdk android:minSdkvVersion="4" />

Unigue package name

<Supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:resizeable="true"
android:anyDensity="true" />

<uses-

<USES

<uUses-

<|Ises

<Uuses

<uses-pe

permission

~PETM1ISSION

PErmlssior

-permission

-PETM1SS100N

android:
android:
android:
android:
android:
android:

name="android.permission
name="android.permission
name="android.permission
name="android.permission
name="androlid.permission
name="android.permission

List of activities, services...
I

.ACCESS COARSE LOCATION" /> PermiSSion defin itions

.ACCESS FINE LOCATION" /> |
.ACCESS LOCATION EXTRA COMMANDS" />
.READ PHONE STATE" />

ik g External libraries

.ACCESS NETWORK STATE" />

<applicatior

android:

icon="@drawable/icon" android:label="@string/app name">
<activity android:name=".FindEventsGADroidActivity"

android: label="@string/app name" pndr01d:conT1gChangesf“br1entatlon[keyboardﬂldden"?]

<intent-filter>

<actlon androld: ="android. i t.action.MAIN" /> . '
et andraddunane- androdd intentactionmamn e Shared UID information

</intent-T1ilt

. 8

</activity>

cr>

</intent-filter>

</activity>

<activity android:name="com.phonegap.DroidGap" android:label="@: .
android:configChanges="orientation|keyboardHidden">

preferred installation location

-

</application>

</manifest>

Activities

e |[n essence itis the Ul.

* An activity consists of a window along with several
other Ul elements.

* Activities are managed by the activity manager
service (which also processes intents that are sent
to Invoke activities).

Activity life cycle

/" Resumed
—iP :
- (visible)
onResume() | — T (1) onPause()
. (2) onResume() ~
: e g |
7 Started " Paused
— '] v L
. (visble) _(partially visiole)
onStart()
.- -) L
(/ Stopped
'S Created) onRestart() * | . \
onCreate() < S/ \ (hiaden) J onDestroy()
Ia' { Destroyed

Services

* Application components without Ul that run in the
background.

 For example, SmsReceiver or BluetoothService

e Services can typically be stopped, started or
bound all by way of Intents.

INtents

* Intents are the key part of inter-app
communications.

e they are message objects that contain information
about an operation to be performed (e.g. make a
ohone call)

* |ntent can also be implicit, when they do not have a
specific destination.

Broadcast Recelvers

* Another component of the IPC.

« Commonly found where applications want to
receive an implicit intent matching certain criteria
(e.qg. receive a SMS).

* They can also be registered at runtime (i.e. not
necessarily in the Android Manifest)

Content providers

e Act as a structured interface to common shared
data stores (typically SQLite).

 E.g. Contacts and Calendar providers manage
centralized repositories with different entries

* Applications may have they own content provider,
and may expose it to other apps.

Anaroid security
model

Security Boundaries

* Places in the system where the level of trust differs
on either side

 Boundary between kernel-space and user-
space.

 Code in kernel space is trusted to perform low-
level operation and access physical memory.

 Code in user-space cannot access all the
memory.

Permissions in Android

* Android OS uses two separate but cooperative permission
models

* Low level: Linux kernel enforces permissions using users
and groups (inherited by Linux)

* Low level permission system is usually referred to as the
Android sandbox.

* High level: app permissions, which limit the abilities of
Android apps.

* The Android runtime/Dalvik VM enforce the high level model

Android’s sandbox

* Unix-like process isolation

 Principle of least privilege

ANndroid sandbox

* Processes run as separate users and cannot
interfere with each other (e.g. send signals or
acCcess one another’'s memory space)

* Unigue user IDs for most processes

e Tightly restricted file system permissions

UID’s

* Android shares Linux’s UID/GID paradigm, but
does not have the traditional passwd and group
files for credentials.

 Android defines a map of names to unigque
identifiers known as Android |IDs (AlDs)

e |n addition to AlDs, Android uses supplementary
groups to enable processes to access shared/
protected resources (e.g. sdcard_rw)

At runtime

 When apps execute their UID, GID and

supplementary groups are assigned to a newly
created process.

* Running under unique UID and GID enables the

operating system to entorce lower-level restrictions
INn the kernel

* |Inter-app interaction is possible, and it is controlled
by the runtime environment.

output of PS command

app_16
app_35
app_155
app_24
app_151
app_49
app_13

4089
4119
4145
4159
4247
4260
4277

1451
1451
1451
1451
1451
1451
1451

304080
309712
318276
307736
303172
303696
453248

31724 . ..
30164 ...
39096 ...
32920 ...
28032 . ..
28132 ...
68260 ...

nVn n n nn NN NN \n

com.htc.bgp
com.google.android.calendar
com.google.android.apps.plus
android.process.media
com.htc.lockscreen
com.htc.weather.bg
com.android.browser

File system permissions

root@android:/ # 1s -1 /data/data

drwxr-x--x
drwxr-x--x
drwxr-x--x

drwxr-x--x

drwxr-x--x
drwxr-x--x
drwxr-x--x
mobile

drwxr-x--x

u0_a3
uO_a4
u0_a5s
u0_a24

uO_as55
uO_as56
u0_as3

u0_ a3l

u0O_ a3
uO_a5s
u0O_as55
uO_as56

u0O_as3

u0_a3l

. com.android.browser
u0 a4 ...

com.android.calculator?2

. com.android.calendar
u0_a24 ...

com.android.camera

com. twitter.android
com.ubercab
com.yougetitback.androidapplication.virgin.

. jp.co.omronsoft.openwnn

Android permissions

 Permissions are required for:
o System API calls
 Database operations (content providers)

* |nter Process Communications (send and receive
Intents)

Application’s permissions

e Extracted from the application’s manifest at install time by the
PackageManager and stored in /data/system/packages.xml

<package name="com.android.chrome"
codePath="/data/app/com.android.chrome-1.apk"
nativeLibraryPath="/data/data/com.android.chrome/11b"
flags="0" ft="1422al61aa8" it="1422al63bla"
ut="1422a163bla" version="1599092" userld="10082"
installer="com.android.vending">

<sigs count="1">

<cert index="0" />

</si1gs>

<perms>

<item name="com.android. launcher.permission. INSTALL_SHORTCUT" />
<item name="android.permission.NFC" />

<item name="android.permission.WRITE_EXTERNAL_STORAGE" />
<item name="android.permission.ACCESS_COARSE_LOCATION" />

<item name="android.permission.CAMERA" />
<item name="android.permission.INTERNET" />

</perms>
</package>

APl permissions

 ¢.g. READ_PHONE_STATE: Read only access to
the phone state.

* An app that requires this permission would
therefore be able to call a variety of methods
related to querying the phone state

getDeviceSoftwareVersion()

getDeviceld()

|PC permissions

e £.g. CALL_PHONE: permission to start a phone call

 An application requires permissions to communicate
with another app.

Intent intent = new Intent(Intent. ACTION_CALL, Uri.parse(...));
startActivity(intent);

Content Provider
DEermissions

e ¢.g. READ_CONTACTS, WRITE_CONTACTS: read or
write access to the contacts provider.

 An application requires permissions to access a
resource at a given URI

State of the art In test

iINnput generation for
Androlid

Inputs”?

Android apps are highly interactive and
event driven.

Ul events (clicks, longclicks, text)

System events (sms received...)

—nvironment

Different strategies

Random

Systematic
Model-based (static - dynamic)
Search-based algorithms

Symbolic-execution

Many useful available frameworks!

Usetul Frameworks

e Ul automation

e Robotium

e Espresso

« Ul automator

e Static analysis
 DARE

 Dex disassemblers

e Soot and Flowdroid

Robotium

An open source test framework
Used to write black or white box tests

Tests can be executed on an Android Virtual Device (AVD) or a real device
Built on Java and Android JUnit Test Framework

Notepad with Robotium

Note 1

Revert changes

&

Edit title

Add note Save note Edit note

Robotium

public void testAddNote() throws Exception {
solo.clickOnMenultem("Add note");
//Assert that NoteEditor activity is opened
solo.assertCurrentActivity("Expected NoteEditor activity", "NoteEditor");
//In text field O, enter Note 1
solo.enterText(0, "Note 1");
solo.goBack();
//Clicks on menu item
solo.clickOnMenultem("Add note");
//In text field O, type Note 2
solo.typeText(0, "Note 2");
//Go back to first activity
solo.goBack();
/[Takes a screenshot and saves it in "/sdcard/Robotium-Screenshots/".
solo.takeScreenshot();
boolean expected = true;
boolean actual = solo.searchText("Note 1") && solo.searchText("Note 2");
/[Assert that Note 1 & Note 2 are found
assertEquals("Note 1 and/or Note 2 are not found", expected, actual);

UlAutomator and Espresso

* UlAutomator is another framework that allows to build
tests for user apps and system apps. (integration)

* Perfect for implementing blackbox testing
techniques.

* Provide means to inspect the layout elements In
activities.

* Espresso is another framework, more suitable for
implementing whitebox testing techniques (single app)

Code coverage with emma

ant emma debug install

Program transtormation
for static analysis

Get the binary code

Android
Project

Compilation and
Packaging

Device or

_Android Package (.apk)

uncompiled
resources

AndroidManifest.xmi

Emulator

dexdump

Signing

Source: http://developer.android.com/tools/building/index.html

dexdump

000418: 2b02 0c00 0000 |0000: packed-switch v2, 0000000c // +0000000c
00041e: 120 |0003: const/4 vO, #int -1 // #{f

000420: 0f00 |0004: return vO

000422: 1220 0005: const/4 vO, #int 2 /] #2

000424: 28fe 0006: goto 0004 // -0002

000426: 1250 0007: const/4 vO, #int 5 // #5

000428: 28fc 0008: goto 0004 // -0004

00042a: 1260 0009: const/4 vO, #int 6 // #6

00042c: 28fa 000a: goto 0004 // -0006

00042e: 0000 |000b: nop // spacer

000430: 0001 0300 faff ffff 0500 0000 0700 ... |000c: packed-switch-data (10 units)

not really easy to understand

Android app analysis

java
bytecode

dex

small

iIntermediate analysis
representations framework

transformation
component

DEX disassemblers

 Other DEX disassembles can produce “more readable”
outputs

 Dedexer: turns the DEX format into an “assembly like”
format. Influenced by Jasmin syntax but with Dalvik
opcodes

e Smali/baksmali: similar to dedexer, but well maintained
(and acts as assembler as well)

- Androguard: written in python. Provides some basic
static analyses (check for similarities, navigate through
cfgs, visualization)

Small example

class name, also determines file path when dumped
.class public Lcom/packageName/example;

inherits from Object (could be activity, view, etc.)
note class structure is L<class path="">;
.super Ljava/lang/Object;

these are class instance variables
field private someString:Ljava/lang/String;

finals are not actually used directly, because references
to them are replaced by the value itself

primitive cheat sheet:

#V -void, B - byte, S - short, C - char, | - int

J - long (uses two registers), F - float, D - double

field public final somelnt:| # the :| means integer

field public final someBool:Z # the :Z means boolean

Do you see how to make arrays?
field public final someCharArray:[C
field private someStringArray:[Ljava/lang/String;

this is the <init> of the constructor

it calls the <init> of it's super, which in this case
is Ljava/lang/Object; as you can see at the top
the parameter list reads: ZLjava/lang/String;l

Z - boolean

Ljava/lang/String; - java String object

(semi-colon after non-primitive data types)

H 1 _ intanar

these are not always present and are usuaully taken
out by optimization/obfuscation but they tell us

the names of Z, Ljava/lang/String; and | before

when it was in Java

parameter "someBool"

Jparameter "somelnt’

parameter "exampleString"

the .prologue and .line directives can be mostly ignored
sometimes line numbers are useful for debugging errors
prologue

line 10

pO means parameter O

PO, in this case, is like "this" from a java class.

we are calling the constructor of our mother class.
what would p1 be”

invoke-direct {p0}, Ljava/lang/Object;-><init>()V

store string in vO
const-string vO, "i will not fear. fear is the mind-killer."

store OxF hex value in vO (or 15 in base 10)

this destroys previous value string in vO

variables do not have types they are just registers

for storing any type of value.

hexadecimal is base 15 is used in all machine languages
you normally use base 10

read up on it

httn://en wikinedia ora/wiki/Hexadecimal

Dare

* Retargeting android apps to Java bytecode

 Motivation (back in 2012): Reuse analyses that

were already implemented on top of frameworks
such as WALA and SOOT

 Aim: produce verifiable Java bytecode, which
ensures it is analyzable by these frameworks.

Retargeting challenges

 Type systems are very different in DVM and JVM:

* Primitive assignments: in Dalvik they specity only the width
of the constant (32 vs 64 bits). No difference between float
and int.

- Array load/store instructions: DVM has array-specific load
and store instructions for int and float arrays (a-get aput) and
for long and double (aget-wide aput-wide). Type ambiguity
again

* Object references: Java bytecode uses null reference to
detect undefined refs. Dalvik instead uses 0O to represent both
number O and null refs.

DARE

 Works well in practice:

e ~262,110 classes (top 50 apps of each of the 22
categories) —> successtul retargeting for

99.09% of apps

Retargeting Android Applications to Java Bytecode
FSE 2012

Dexpler

Converts Dalvik bytecode to Jimple intermediate
representation.

Jimple is the representation used in the Soot
framework

Built on top of dedexer

Uses typing inference algorithm of soot (but deals
with typing ambiguities)

Converting Android Dalvik Bytecode to Jimple for Static Analysis with Soot — SOAP12

Jimple

foo()

Main this;
dl, d2, temp$0;
11;

this := @this: Main;
dl = 3.0;
d2 = 2.0;
temp$0 = d1 * d2;
11 = (int) temp$0

this.<Main:

void foo() {
double dl =
double d2 =
1nt 11 =
bar(this,11);
}

bar(Main,

)>(thts,

3.0;
2.0;
(i1nt) (dl*dZ),

11);

B~ LW

N

[
[enBNeRNe RN @)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Challenges of the Android
ife cycle

public class LeakageApp extends Activity{
private User user = null;
protected void onRestart (){
EditText usernameText =
(EditText)findViewById(R.id.username) ;

EditText passwordText = '
(EditText)findViewById(R.id.pwdString) ; read de frOm teXt fleld
String uname = usernameText.toString();

String pwd = passwordText.toString() ; \A/r]EErW tr1€3 EiF)F) r(é&StEirtES

if (!uname.isEmpty () && !pwd.isEmpty())
this.user = new User (uname, pwd);

}
//Callback method in xml file

public void sendMessage (View view){
if (user == null) return;

Password pwd = user.getpwd(); When the User presses a

String pwdString = pwd.getPassword();

String obfPud = "' button the pwd Is sent via sms

//must track primitives:
for(char ¢ : pwdString.toCharArray())

obfPwd += ¢ + "_"; //String concat.
String message = "User: " +

user.getName() + " | Pwd: " + obfPwd; F) Cj F)F)
SmsManager sms = SmsManager.getDefault () ; |rT1 ()rtéirwt t() rTWCD Eal Ei

sms .sendTextMessage ("+44 020 7321 0905",

T message. aull, aull): ife cycle and callbacks!!

Activity life cycle

/" Resumed
—iP :
- (visible)
onResume() | — T (1) onPause()
. (2) onResume() ~
: e g |
7 Started " Paused
— '] v L
. (visble) _(partially visiole)
onStart()
.- -) L
(/ Stopped
'S Created) onRestart() * | . \
onCreate() < S/ \ (hiaden) J onDestroy()
Ia' { Destroyed

Automated testing In
Android

Automated Testi Input Generation for Android: Are
We There Yet? — under submission
http://arxiv.org/abs/1503.07217

http://arxiv.org/abs/1503.07217

FUzzIing

* 2 ’

"ab’'d>dfggg” grep ® sh e sed ... 25%—-33%

Send "10%888888888f" as command to the csh command-line shell

Invoke this with string ="%888888888f":

char *string = ...
printf(string);

...and made the shell hang

Fuzzing In Androio

 Mildly widely used so far.

* Fuzzing mainly focused on IPC

Null Intent fuzzer

* Very simple fuzzer: Null intents

e Create null intents and see whether the
broadcast receivers registered to those intents
crash.

Null Intent fuzzer

- |dentify targets:

e thanks to PackageManager

- Generate intents

e |Intenti = new Intent()

 Deliver inputs

e sendBroadcast(i)

- Monitor

e |ogcat.. —> NullPointerExceptions

Null Intent fuzzer

iISECpartners®

part of NCCQroup

“‘can either fuzz a single component or all components. It works
well on Broadcast receivers, and average on Services”.

Only single Activities can be fuzzed.

Runs on device as an app,
Opensource

Detected a serious bug in a google
package that makes the phone hang

INntent fuzzer

 Works exactly like null intent tuzzer

e Static analysis component that can detect the
expected structure of an intent.

* Works with inputs of primitive types

Intent Fuzzer: Crafting intents of death
WODA+PERTEA 2014

DroidkFuzzer

e |t focuses on generating inputs for activities that
accept MIME data types (AVI, MP3, HTML files)

* |t can make video player apps crash

e Jool not availlable

DroidFuzzer: Fuzzing the Android apps with
Intent-filter tag — MoMM 2013

Automated GUI
testing iIn Android

Randomized GUI testing

Monkey

Tests Android apps at the GUI level
Randomly generates Ul events

Runs on emulator or real device

$ adb shell monkey

Dynodroid

* Executor executes the event in the current state to yield a new
emulator state (that overwrites the current state)

* Observer computes which events are relevant in the new state

e Selector selects one of the events to execute

Inital event e (install and start app)

é Selected event e from E

‘ Intercepted
€ 5 system - App under test » calls fro.m
event - Activity Inst; Rl | 2Pps toSOK | All relevant
\ ' events
. E=E,UE,
— ‘
- i
Device Emulator s

Dynodroid

 How to generate relevant inputs?

* First generate it randomly but... It lets users
pause the automated crawling and let them
provide an input.

Dynodroid: An Input Generation System for Android Apps — ESEC/FSE13

Vlodel-based techniques

Calculate

GUIRipper

* Dynamically builds FSM model
 DFS exploration strategy
* At each step it keeps list of relevant Ul events

Allows users to create snapshots
and provide custom inputs

Using GUI Ripping for Automated Testing of Android Applications — ASE12

\f}) Android Ripper

Click New Post

Dl @ 7:02em

Post Content

Tags & Categories

omme

Select Categories
Selected categories.

Settings
Status:

Publish

Publish: Immediately ' Edit

Click Save

S Ml @ 8:47m

@ No Content Found

Please enter some post

content or attach a media item.

Ml @ 6:50em

¥ testandroidripper ~ £ TR

New Post New Page

a B

Quick Photo Quick Video

Comments

i 8 «

Settings Read Stats

Press Menu

T Ml @ 7:04pm

~ mm
Y R+

Click Refresh

0 Ml @ 6:50em

\f}/ testandroidripper ¥ c ,:

..

New Page

\“« testandroidripper

New Page

4
=

Quick Video

a B

Quick Photo Quick Video

® L

Pages Cammy

o ©

Comments

Add Account Preferences
Remove Blog About

Click Pages

%mﬁ 7:00pm

@)\ testandroidripper ¥ s ==

Pages

About

1:07pm, Aug 10, 2012

Click Add Account Click About

Ml & 7:05em

Start blogging from your
mobile in seconds.

Start a new blog at WordPress.com
Add blog hosted at WordPress.com

Add self-hosted WordPress blog

B @ 7:01em

@ testandroidripper ¥ G ==

About)

This is an example of a page. Unlike
posts, which are displayed on your blog's
front page in the order they're published,
pages are better suited for more
timeless content that you want to be
easily accessible, like your About or
Contact information. Click the Edit link to
make changes to this page or add
another page.

Click
Edit

A sorry!

The application WordPress
(process org.wordpress.
android) has stopped
unexpectedly. Please try again.

Force close

Orbit GUI testing

Android 1 Greybox approach é@

Apps

Statically extracts all the possible set of events
supported by the GUI on an app.

Dynamically exercises these events on the app.

A Grey-Box Approach for Automated GUI-Model Generation of Mobile Applications — FASE13

Proposed GU| model

Visual Observable State
Composition of the state

Model

A finite-state machine over visual observable states with
the user actions constituting the transitions between
these states

States

hese two
states differ

Enable Exclude Tax Rate

excludes tax rate from tio when

enapied

Enable Exclude Tax Rate

Enable Round Up

Automatically round up the otal w

enablec

Enable Round Up

(5b) (5d)

Model for Simple
Tippy lipper

D) (2) (4)

A

8 502

oY ST GIE]
A -
$0.00 -

Tip (15.0%)

e e Tota

| Enable Exclude Tax Rate @

Enable Round Up
KN KN KN , sz o esmames (D

N I £
T
: * 8

10

00

(3 (3 (5)

al: Toggle exclude tax rate option.
a2: Toggle round up option.

Action Inference

TippyTipper.java

lll

public void onClick(View v) {
removeBillAmount();
FlurryAgent.onEvent(“Delete Button”);

R.Id.java

public static final class id {

public static final int about=0x7f0a002d;

public static final int btn_SplitBill=0x7f0a002b;
public static final int btn_TipAmount1=0x7f0a0026;
public static final int btn_TipAmount2=0x7f0a0027;
public static final int btn_TipAmount3=0x7f0a0028;
public static final int btn_add person=0x7f0a001a;
public static final int btn_clear=0x7f0a000c;

lll

--

public void onLongClick(View v) {
clearBillAmount();

return true;

s

CPUbLicTUSEatie FIRAT IRt T hEn eight=0x7t0a0002; "

- . - Pp— = -

Inference: Widget btn delete with Id = O0x7f0000a
supports actions click and longClick

ORBIT: static analysis

* |dentify components on which to fire an event (e.g. longClick):

* build call graph to find methods that call
setOnLongClickListerer

* |ocate statement in the caller method and get the object
the listener is registered to.

* pbackward analysis to get to the object Iinitialization to get
1D

* add ID+action to list of actions to be triggered dynamically

Implementation

Action Detector
,i_ _ _\I_V_A_L_A_ _ _E | Partial Connected
SR Call Graph
¢ f :
S| | | sub-CallGraph | i oo '
v P 'Inference Algorithm
5 ! e e ! GUI Model
8 rTTT T T T T T T T T T T T T I [
\ Intent Passing Logic — [Action Mapping
Android | ~| | [Fooo-emmemoiooo- |
4\
AUT N o>
< e i ____________
§' e Y, l
.+ FwdCrawl Algorithm —
< 1 T |
| Robotium |
Android Runtime

Dynamic Crawler

ORBIT

Automatic Android App
explorer (A3E)

* Does not require access to source code

» Jargeted and Depth-first visiting strategy
* Higher level of abstraction (1 activity, 1 state)
* Jargeted strategy uses static analysis to

compute all the activities as entry points (to
analyse all of them)

Targeted and Depth-first Exploration for Systematic Testing of Android Apps — OOPSLA13

Swifthand

 Dynamic model of the app. Exploration algorithm
aims to reduce the number of restarts as much as
possible.

e [imited to touching and scrolling events

Guided GUI Testing of Android Apps with Minimal Restart and Approximate Learning — OOPSLA13

PUMA

 Framework that provides a basic monkey-like
implementation.

e provides a model-based representation of an app

e possible to iImplement different levels of abstraction

PUMA: Programmable Ul-Automation for Large Scale Dynamic Analysis of Mobile Apps — Mobysys14

L imitation of model-based
strategy”?

 Changes in internal states not represented in the
model

e Problem for services

FvoDroio

 Evodroid: Uses evolutionary algorithms to guide the
test-case generation towards unexplored code

* individuals as sequences of test inputs

 mutation and crossover operators to recombine
iINputs

100l not avallable

EvoDroid: Segmented Evolutionary Testing of Android Apps — FSE14

ACTEve

e Concolic testing tool that symbolically tracks events
from their generation up to the point where they are
handled in the app.

 Works both on system and Ul events

Automated Concolic Testing of Smartphone Apps — FSE12

JPF-Android

* extends JPF, the popular model-checking tool for
Java.

* aims to explore all paths to detect deadlocks and
runtime exceptions

e [imitation: assumes that user provides the list of
INnputs.

Execution and Property Specifications for JPF-Android — JPFWorkshop 14

Summary of tools

Name Available Instrumentation Events EXpatition; | Needs source bl
strategy code strategy
| Platform | App Ul System

Monkey [10] v X X v X Random X Black-box
Dynodroid [11] v v X v v Random X Black-box
DroidFuzzer [12] v X X X X Random X Black-box
IntentFuzzer [13] v X 5 X X Random X White-box
Null IntentFuzzer [14] v X X X X Random X Black-box
GUIRipper [15] i X v v X Model-based X Black-box
ORBIT [16] X X X v X Model-based v Grey-box
A®E -Depth-first [17] v X v v X Model-based X Black-box
SwiftHand [18] v X v v X Model-based X Black-box
PUMA [19] v X v v X Model-based X Black-box
A’E -Targeted [17] X X v v X Systematic X Grey-box
EvoDroid [20] X X v v X Systematic X White-box
ACTEve [21] v v v v v Systematic v White-box
JPF-Android [22] v X X v X Systematic v White-box

Aim of the study

Ease of use Android framework Effectiveness of
compatibility exploration strategy

Fault detection abillity

Automated Test input Generation for Android:
Are we there yet? S. Roy Choudhary, A.Gorla, A.Orso - under submission

Benchmark

50 from Dynodroid
3 from GUIRipper
5 from ACTEve
10 from Swifthand

F-droid
68 apps

APPS Logcat

Coverage
lll

Ice -cream

Gmgerbread G Kitkat
sandwic
(vs. 10) vs. 16) (vs. 19)

S
¥ ¥ ¥ ¥

10 runs of 1 hour for each tool on each app

VAGRANT

Ease of use and

compatipbility

Name Ease Use Compatibility
Monkey [10] NO_EFFORT any
Dynodroid [11] NO_EFFORT v.2.3
GUIRipper [15] MAJOR_EFFORT any
A’E -Depth-first [17] | LITTLE_EFFORT any
SwiftHand [18] MAJOR_EFFORT v.4.1+
PUMA [19] LITTLE_EFFORT v.4.3+
ACTEve [21] MAJOR_EFFORT v.2.3

Exploration Strategy

Effectiveness

1
|
|
o
puma

cf
guiripper

||

|

|
a3e

— . - —

|
El
dynodroid

]

(

(

|

[

|
acteve

I
|
|
|
|
1
|
|
|
S
monkey

100

o) o o
o O =

abeiano)

20
0

Android Test Input Generation Tools

Coverage

100

80}

@)
o

Progressive coverage

monkey
acteve

dynodroid |-

a3e

guiripper
puma

15

20

25 30 35
Time in minutes

40

45

50 55

60

Fault detection abllity

90

java.io

java.net
java.lang

library

custom
android.database
android.content

80

70}

ponanni

Failures
w (o))}
o o

S
o

w
o

20

10

monkey acteve dynodroid a3e guiripper puma swifthand
Android Test Input Generation Tools

a3e dynodroid acteve monkey

.

puma guiripper

swifthand

monkey

acteve dynodroid a3de guiripper puma
- 100 T 100
B 19 % = 4% B 261
LI LD R LI
= 3 5% - szinf| 7 - e 70

monkey acteve

100

75

50

25F

acteve

S0

25

50

25

monkey dynodroid monkey guinpper monkey puma
- 100 + 100 : 100 -
33.7% B3 254% & 251% I 25.6%
3 38.0% = 33 % [P& LA =3 3%
- sy 7 o einf| 70 - csen) 72 - 29.7%
50 50
25 25
acteve dynodroid acteve Quiripper acteve puma

100

75

50

a3e

0
dynodroid guinpper

. 26.1%
- 00
- 271N

0
dynodroid

puma

acteve

0
guinpper

guiripper dynodroid

[o]

o — =
guiripper

B 22.5%
B3 260%
L IR

= o

—

dynodroid

T

ale

B 21 6%
== 27.8%
. 29.2%

puma

0 guiripper

puma

[
= 36

acteve

100 100

= o

- 15

75 75 —

50 sof

25 25} J :
0 A 3

0
swifthand monkey swifthand acteve

0
swifthand dynodroid

0
swifthand guiripper

Challenges and
Opportunities

e few tools support the generation of system events.

e which events to trigger and when?

e static analyses can be expensive, but may be useful to
understand which events to trigger

Challenges and
Opportunities

facebook

* Dynodroid, GUIripper only tools that consider this

* Very basic. Can we do better?

Challenges and
Opportunities

eQy
O eX\O\OVaX'\O“ sirated

e e.g. Minimize restarts

e algorithm focused only on that is not enough.
However, this is an interesting idea. Should be
combined with other heuristics

Challenges and
Opportunities

Y

* e.g. Multiple starting states

 GUIRIipper can support this, but it is very
basic. Has to be done manually.

Challenges and
Opportunities

 Dynodroid and A3E can clean state between
runs (uninstalling app and clear data)

use our Infrastructure!

Challenges and
Opportunities

6\007&(\
it

e avoid disruptive effects of some operations

Challenges and
Opportunities

not easy to see failure reports.
not easy to reproduce failures.
debugging???

NO tool is good at this.

Challenges and
Opportunities

ccccccccc

cccccccccc
aaaaaaa

* Few commercial tools are dealing with problem

» Basic solutions (lots of manual work)

