
.lu
software verification & validation
VVS

Reverse-engineering and Automated Testing of
Access Control Policies

Thanh H. Le, Cu D. Nguyen, and Lionel Briand
Interdisciplinary Centre for Security, Reliability and Trust (SnT Centre)

Benjamin Hourte
HITEC Luxembourg

TAROT 2015

Access Control in Web
Applications

2

Resources

Application
AC
(Roles

+
Permissions)

Users Roles Who? What? Which conditions?

AC policy specifications

AC policy implementations

AC Vulnerabilities and Exploitation
Facts

3

OWASP Top 10 (2013)
A1 – Injection
A2 – Broken Authentication and 
 Session Management
A3 – Cross-Site Scripting (XSS)
A4 – Insecure Direct Object  
 References
A5 – Security Misconfiguration
A6 – Sensitive Data Exposure
A7 – Missing Function Level Access  
 Control
A8 – Cross-Site Request Forgery (CSRF)
A9 – Using Known Vulnerable  
 Components
A10 – Unvalidated Redirects and  
 Forwards

File manipulation
1%

Other
2%Unknown

5%

Data manipulation
5%

Gain privileges
8%

Bypass security
9%

Obtain information
12%

Denial of service
14%

Cross-site scripting
18%

Gain Access
26% Gain Access

Cross-site scripting
Denial of service
Obtain information
Bypass security
Gain privileges
Data manipulation
Unknown
Other
File manipulation

TRANSACTIONS
Beginning Balance €4.650,00

Type Date Description Category Amount Balance

101 01/10/09 Rent Home € (775,00) € 3.875,00

102 15/10/09 Utilities Home € (97,40) € 3.777,60

Debit Card 16/10/09 Fill up SUV for camping trip Gas € (75,00) € 3.702,60

Debit Card 22/10/09 Groceries Food € (101,00) € 3.601,60

104 24/10/09 Dinner with Paul and Jane Food € (125,00) € 3.476,60

Debit Card 25/10/09 Movies Entertainment € (35,00) € 3.441,60

DEP 29/10/09 Insurance refund Deposit € 135,00 € 3.576,60

DEP 30/10/09 Paycheck Deposit € 1.525,00 € 5.101,60

Debit Card 31/10/09 Fill up SUV again Gas € (62,50) € 5.039,10

105 01/11/09 Credit card payment Credit Card € (850,00) € 4.189,10

DEP 01/11/09 Security deposit return Deposit € 300,00 € 4.489,10

Debit Card 02/11/09 Night on the town Entertainment € (210,00) € 4.279,10

ACCOUNT CATEGORIES
Category Amount
Gain Access 26
Cross-site scripting 18
Denial of service 14
Obtain information 12
Bypass security 9
Gain privileges 8
Data manipulation 5
Unknown 5
Other 2
File manipulation 1
Total 100

Source: IBM X-Force (R) Research and Development

Consequences of Exploitation 2013

Research Problems and Goal

Problems:

• AC policies are not explicitly defined or modelled

• Lacks of a systematic, scalable, and automated approach and
tools for testing AC

Research Goal:

• Bottom-up reverse engineering of AC policies using dynamic
analysis and machine learning

4

Dynamic Analysis

Bottom-Up Strategy To
Learn AC Policies

5

Machine Learning

AC Policies
(user1,role1,{c1,c2})
(user1,role2,{c1,c2})

(user2,role2,{c1})
…

• Automatically discover resources and access permissions
• Use machine-learning to learn AC policy specifications

The Steps of Our Approach

6

Exploratory
Access Testing

Resource
Access Analysis

Inferring
Access Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Step 1. Exploratory Access Testing

• Discovering SUT resources using semi-automated crawling

• Access testing: all users vs all resources
7

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Step 1. Exploratory Access Testing

• Provide more crawling entries to improve resources discovery
8

SUTSpider
Credential

Set
Credential

Set
Credential

Set

Access
PoliciesAccess

PoliciesUser
Access Log

Proxy

JavaScript-support
browser

Request generator
(based on web directory

structure)

Step 1 Output: User Access Logs

• HTTP requests (resource URLs, parameters, etc.)

• HTTP responses for requests from every specific user

9

Step 2. Resource Access Analysis

• Extract resources from access requests

• Determine access permissions based on response contents and HTTP codes
10

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Step 2 (continued)
• Extract resources from HTTP requests

• base-URI-resource : base URI (http://host/path/to/resouce)
• full-resource: base URI + parameters (e.g.: query strings, session’s

cookies) (http://host/path/to/resouce?p1=v1&p2=v2)
• Determine access permissions from responses

• based on HTTP codes and response content patterns

11

• Output: Access Data (user, role, resource, {res-attributes}, {context-
attributes}, permission)

http://host/path/to/resouc
http://host/path/to/resouc

Example of the Access Data Obtained
at Step 2

12

User Role Resource Method Request Attribute Permission

admin adminRole /home/admin/createUser GET ALLOWED

admin adminRole /home/admin/createUser POST username=‘john007’&fullname ALLOWED

admin adminRole /home/admin/createUser POST username=‘pte.lm’&fullname= ALLOWED

admin adminRole /home/admin/createUser POST username=‘bob’&fullname=‘B ALLOWED

junior juniorManagerRole /home/admin/createUser GET DENIED

senior seniorManagerRole /home/admin/createUser GET DENIED

senior seniorManagerRole /home/admin/createUser GET DENIED

junior juniorManagerRole /home/manager/manageDocument/ajax-create GET ALLOWED

junior juniorManagerRole /home/manager/manageDocument/ajax-create POST title=‘a title’&docType=‘note’& ALLOWED

senior seniorManagerRole /home/manager/manageDocument/ajax-create POST title=‘new title’&docType=‘note DENIED

junior juniorManagerRole /home/manager/manageDocument/ajax-delete GET docId=1 ALLOWED

senior seniorManagerRole /home/manager/manageDocument/ajax-delete GET docId=1 DENIED

junior juniorManagerRole /home/manager/manageDocument/ajax-update POST docId=1 ALLOWED

senior seniorManagerRole /home/manager/manageDocument/ajax-update POST docId=1 DENIED

user1 userRole /home/manager/manageDocument/ajax-update GET docId=1 DENIED

user2 userRole /home/user/viewDocument GET docId=1 DENIED

junior juniorManagerRole /home/user/viewDocument GET docId=1 DENIED

user1 userRole /home/user/viewDocument GET docId=2 DENIED

user1 userRole /home/user/viewDocument GET docId=1 ALLOWED

Step 3. Inferring Access Rules

Infer AC policies from access data using machine learning
13

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Step 3 Output:
• Resource access classification using Decision tree

• Access rule:

IF resource = “home/user/viewDocument”  
 AND role = userRole  
 AND method = “GET”  
THEN DENIED

14

resource = “home/user/viewDocument”  
 | role = userRole :  
 | method = “GET”: DENIED (3/1) 
 | role = juniorManagerRole:  
 | method = “GET”: DENIED (1/0)

Resource

Role

Role

Context

ALLOWED

DENIED

ALLOWED

DENIED

…
…

…

…

r1

rN

role 1

role K

role 1

role K

c 1

c M

Example:

Step 4. Rule Assessment

Highlight inconsistent and “suspicious” policies
15

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Step 4 (cont.)
• Inconsistent policies (inferred with less than 100% confidence)

resource = “home/user/viewDocument”  
 | role = userRole :  
 | method = “GET”: DENIED (3/1)

– transient server errors

– resource extraction

– other factors like user’s profiles

• Suspicious policies

• Related to sensitive resources (e.g. database, configuration, password)

• Having permission as allowed to all users

16

Step 5. Incremental Access Testing

17

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies Resources related to

inconsistent policies

Analyse and Infer AC Policies

• To be validated by experts

18

Exploratory
Access Testing

Resource
Access Analysis

Inferring Access
Rules

Rule
Assessment

Targeted Incremental
Access Testing

Credential
Set

Credential
Set

Credential
Set

Access
Policies
Access
Policies
Access
Policies

Evaluation

19

Research Questions

RQ1. Does the proposed approach effectively
discover resources for inferring AC policies? 

RQ2. What is the quality in terms of correctness and
consistency of the inferred AC policies? 

RQ3. How useful are the inferred AC rules in detecting
AC issues?

20

Web Applications

21

iTrust ISP

Licence Open Source Commercial

AC
specification

 Hardcoded Role-based
AC policies - Gold
standard

Specified by ISP’s super
users in administration
module

RQ1. Resource Discovery

22

iTrust ISP

Discovery
Method Baseline All-entry without

Javascript with
Javascript

of Resources
Found 130 248 (100% of

all resources) 353 680 (?)

RQ2. Quality of Inferred AC Rules:
iTrust Result

204 resources (out of 248):

• ~95% AC rules are correct with the gold standard

• ~5% AC rules cannot be confirmed because they are not
covered by the gold standard

• 38 resources are not protected by AC design and implementation

23

RQ3. Detecting AC Issues

• We detected three vulnerabilities in the unprotected
resources

• ../util/resetPassword.jsp allows a user to change
passwords of other users

• ../util/getUser.jsp is supposed to have access
enforced from other pages but can be directly
accessed without authorisation

• ../errors/reboot.jsp allows any user to reboot the
web server

• 44 resources (out of 248) return Java exception
error pages which are accessible by all users

• Disclose source codes and database information

24

iTrust ISP
• 15 CSV and JSON files that were not protected

from direct accesses from all users

• Based on inconsistent rules, we found

• Discrepancy between defined AC rules and
inferred AC rules

• AC enforcement is not correctly implemented

• Confirmed by ISP developers

Challenges

Dealing with domain data,
business flows & contexts

• Why: will help discovering more resources & attributes that affect AC
policies

• to learn more consistent policies

• How:

• submit meaningful and diverse input data

• consider business logic: data flows and request orders

• consider access contexts & user profiles
26

Submit meaningful and diverse input
data with combinatorial testing

• Specify input values classification using XInput

• XML syntax, inspired by XML Schema (XSD), familiar to developers and easy to use

• Define data types & domains of input fields

• Data types: integer, double, string, date, hex

• Using value restrictions to define data domains:

• minInclusive, minExclusive, maxInclusive, maxExclusive, totalDigits,
fractionDigits, length, minLength, maxLength, enumeration

• regular expression (regex)

27

Specifying XInput

• Extract from user interface

• E.g.: <select>

• Extract from crawling logs automatically

• Ask domain experts

28

Example of XInput
<xinput id="mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName" inputFieldId="POST_/pssuportal/
management/vehicles/vehicle/create/new/?mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName"
source="interactive" type="POSTQSTR">

<atomicParam id="mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName">

<dataClz base="string" name="vehicle display name">

<minLength value=“5”/>

<maxLength value=“40”/>

</dataClz>

<dataClz base=“string” name=“name with invalid character”>

<enumeration value=“delete * where 1=1;”/>

<enumeration value=“ “/>

</dataClz>

</atomicParam>

</xinput>

29

Summary

• We proposed a bottom-up reverse engineering of AC policies
for Web applications

• Effectively discover Web application resources and
determine resource accesses

• Inferred AC policies are highly correct with AC specification

• The inconsistency of inferred AC policies can help finding AC
issues

30

