UUUUUUUUUU

Reverse-engineering and Automated Testing of
Access Gontrol Policies

Thanh H. Le, Cu D. Nguyen, and Lionel Briand

Interdisciplinary Centre for Security, Reliability and Trust (SnT Centre)

Benjamin Hourte
HITEC Luxembourg

TAROT2015 S

UUUUUUUUUU

Access Control in Web
Applications

(o = o Applicati
> < QI 3 (Roles pplication
| \ | Permissions)

Resources
Users Roles

AC policy specifications

AC policy implementations

AC Vulnerabilities and Exploitation
Facts

OWASP Top 10 (2013) Consequences of Exploitation 2013
A1 — Injection et
A2 — Broken Authentication and
Session Management

A3 — Cross-Site Scripting (XSS)

A4 — Insecure Direct Object
References

A5 — Security Misconfiguration

A6 — Sensitive Data Exposure

A7 — Missing Function Level Access
Control

A8 — Cross-Site Request Forgery (CSRF) Obta fomaton

A9 — Using Known Vulnerable |
Components Derial of servie

A10 — Unvalidated Redirects and

Gain Access
26%

FO rwa rdS Source: IBM X-Force (R) Research and Development

Research Problems and Goal

Problems:
e AC policies are not explicitly defined or modelled

e Lacks of a systematic, scalable, and automated approach and
tools for testing AC

Research Goal:

e Bottom-up reverse engineering of AC policies using dynamic
analysis and machine learning

4

Bottom-Up Strategy To
Learn AC Policies

AC Policies
(useri,role1,{c1,c2})
(user1i,role2,{c1,c2})

(user2,role2,{c1})

Machine Learning
Dynamic Analysis

e Automatically discover resources and access permissions
e Use machine-learning to learn AC policy specifications

5

The Steps of Our Approach

Credential | - - - - - - 5| Exploratory
1 Set Access Testing

' v

Resource
Access Analysis ‘\

Inferring Targeted Incremental
Access Rules Access Testing

. v

Access |g- - - - -‘ Rule
1| Policies Assessment

Step 1. Exploratory Access Testing

Credential |-=--~-- > Explorator.y
Access Testing
Set *
Resource
Access Analysis 4\
Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Policies Assessment

e Discovering SUT resources using semi-automated crawling

e Access testing: all users vs all resources

7

Step 1. Exploratory Access Testing

Credential
Set

1 1 .
"' Request generator '
1) 1 :
it (based on web directory i,

[|
|
structure) : 1 \y

User
1| | Access Log

 Provide more crawling entries to improve resources discovery

8

Step 1 Output: User Access Logs

 HTTP requests (resource URLs, parameters, etc.)

 HTTP responses for requests from every specific user

Step 2. Resource Access Analysis

Credential f===~-- > Explorator_y
Access Testing
Set *
Resource
Access Analysis 4\
Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Policies Assessment

e Extract resources from access requests

e Determine access permissions based on response contents and HTTP codes

10

Step 2 (continued)

 Extract resources from HTTP requests

* base-URI-resource : base URI (nttp://host/path/to/resouce)

* full-resource: base URI + parameters (e.g.: query strings, session’s
cookies) (http://host/path/to/resouce?p1=v1&p2=v2)

* Determine access permissions from responses

e pased on HTTP codes and response content patterns

Condition Permission
HTTP Code = 4xx or 5xx or 301, any content denied
HTTP Code = 200 or 302 or 304, denial-matched con- denied
tent

HTTP Code = 200 or 302 or 304, not-matched content allowed

e Qutput: Access Data (user, role, resource, {res-attributes}, {context-
attributes}, permission)

11

http://host/path/to/resouc
http://host/path/to/resouc

Example of the Access Data Obtained
at Step 2

User Role Resource Method Request Attribute Permission
admin adminRole /home/admin/createUser GET ALLOWED
admin adminRole /home/admin/createUser POST username=john007’&fullname ALLOWED
admin adminRole /home/admin/createUser POST username="pte.Im’&fullname= ALLOWED
admin adminRole /home/admin/createUser POST username=‘bob’&fullname="B ALLOWED
junior juniorManagerRole /home/admin/createUser GET DENIED
senior seniorManagerRole /home/admin/createUser GET DENIED
senior seniorManagerRole /home/admin/createUser GET DENIED
junior juniorManagerRole /home/manager/manageDocument/ajax-create GET ALLOWED
junior juniorManagerRole = /home/manager/manageDocument/ajax-create POST titte="a title’&docType="note’& ALLOWED
senior seniorManagerRole /home/manager/manageDocument/ajax-create POST titte="new title’&docType="note DENIED
junior juniorManagerRole = /home/manager/manageDocument/ajax-delete GET docld=1 ALLOWED
senior seniorManagerRole /home/manager/manageDocument/ajax-delete GET docld=1 DENIED
junior juniorManagerRole = /home/manager/manageDocument/ajax-update =~ POST docld=1 ALLOWED
senior seniorManagerRole /home/manager/manageDocument/ajax-update = POST docld=1 DENIED
user1 userRole /home/manager/manageDocument/ajax-update = GET docld=1 DENIED
user2 userRole /home/user/viewDocument GET docld=1 DENIED
junior juniorManagerRole /home/user/viewDocument GET docld=1 DENIED
useri userRole /home/user/viewDocument GET docld=2 DENIED
user userRole /home/user/viewDocument GET docld=1 ALLOWED

12

Step 3. Inferring Access Rules

Exploratory
Access Testing

v

Resource
Access Analysis 4\

Credential p=--~-- >
Set

Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Policies Assessment

Infer AC policies from access data using machine learning

13

Step 3 Output:

* Resource access classification using Decision tree

i Context)<
DENIED
Role

role k

role ; - Example:
I'n Role
role k DENIED resource = “home/user/viewDocument”

| role = userRole :

| method = “GET”: DENIED (3/1)
| role = juniorManagerRole:

| method = “GET”: DENIED (1/0)

I

C Resource

e Access rule:

IF resource = “home/user/viewDocument”
AND role = userRole
AND method = “GET”

THEN DENIED

14

Step 4. Rule Assessment

Exploratory
Access Testing

v

Resource
Access Analysis 4\

Credential p=--~-- >
Set

Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Policies Assessment

Highlight inconsistent and “suspicious” policies

15

Step 4 (cont.)

e Inconsistent policies (inferred with less than 100% confidence)

BeEGlieec N homefuser /viewbDocument
| role = userRole :
| method = “GET”: DENIED (3/1)

- transient server errors
- resource extraction
- other factors like user’s profiles
e Suspicious policies
 Related to sensitive resources (e.g. database, configuration, password)

e Having permission as allowed to all users

16

Step 5. Incremental Access Testing

1 Credential p==-=-~=- > Explorator_y

Set Accessil’ esting
Resource
Access Analysis

v

Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Policies Assessment
Resources related to

|nconS|stent policies

17

Analyse and Infer AC Policies

Exploratory
Access Testing

v

Resource
Access Analysis 4\

Credential p=--~-- >
Set

Inferring Access Targeted Incremental
Rules Access Testing
Access |€- - - - -| Rule g
Bolicies Assessment

 To be validated by experts

18

Evaluation

19

Research Questions

RQ1. Does the proposed approach effectively
discover resources for inferring AC policies?

RQ2. What is the quality in terms of correctness and
consistency of the inferred AC policies?

RQ3. How useful are the inferred AC rules in detecting
AC issues?

20

Web Applications

Licence Open Source Commercial

Hardcoded Role-baseq SPecified by ISP's super

AC AC policies - Gold users in administration
module

standard

specification

21

RQ1. Resource Discovery

iTrust

Discovery without

Method Baseline All-entry Javascript W|th_
Javascript
o
of Resources 130 248 (100% of 353 680 (?)

Found all resources)

22

RQ2. Quality of Inferred AC Rules:
ITrust Result

204 resources (out of 248):
e ~95% AC rules are correct with the gold standard

e ~5% AC rules cannot be confirmed because they are not
covered by the gold standard

38 resources are not protected by AC design and implementation

23

RQ3. Detecting AC Issues

iITrust

e We detected three vulnerabilities in the unprotected
resources

o ../util/resetPassword.jsp allows a user to change
passwords of other users

o ../util/getUser.jsp is supposed to have access
enforced from other pages but can be directly
accessed without authorisation

o ../errors/reboot.jsp allows any user to reboot the
web server

* 44 resources (out of 248) return Java exception
error pages which are accessible by all users

* Disclose source codes and database information

24

ISP

e 15 CSV and JSON files that were not protected
from direct accesses from all users

e Based on inconsistent rules, we found

* Discrepancy between defined AC rules and
inferred AC rules

 AC enforcement is not correctly implemented

* Confirmed by ISP developers

Challenges

Dealing with domain data,
business flows & contexts

e Why: will help discovering more resources & attributes that affect AC
policies

* to learn more consistent policies
* How:
e submit meaningful and diverse input data
e consider business logic: data flows and request orders

e consider access contexts & user profiles

26

Submit meaningful and diverse input
data with combinatorial testing

 Specify input values classification using Xinput

e XML syntax, inspired by XML Schema (XSD), familiar to developers and easy to use
 Define data types & domains of input fields

e Data types: integer, double, string, date, hex

e Using value restrictions to define data domains:

e mininclusive, minExclusive, maxinclusive, maxExclusive, totalDigits,
fractionDigits, length, minLength, maxLength, enumeration

e regular expression (regex)

27

Specifying Xinput

 Extract from user interface
* E.g.: <select>
 Extract from crawling logs automatically

e Ask domain experts

28

Example of Xinput

<xinput id="mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName" inputFieldld="POST_/pssuportal/
management/vehicles/vehicle/create/new/?mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName"
source="interactive" type="POSTQSTR">

<atomicParam id="mainBodySubView:subview:mainform:displayName:pssu-management-form-displayName" >
<dataClz base="string" name="vehicle display name">
<minLength value=“5"/>
<maxLength value=“40"/>
</dataClz>
<dataClz base="string” name="“name with invalid character”>
<enumeration value=“delete * where 1=1;"/>
<enumeration value=" “/>
</dataClz>
</atomicParam>

</xinput>

29

Summary

e We proposed a bottom-up reverse engineering of AC policies
for Web applications

o Effectively discover Web application resources and
determine resource accesses

e Inferred AC policies are highly correct with AC specification

 The inconsistency of inferred AC policies can help finding AC
iIssues

30

