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test-based modeling 
= 

active automata learning



–Arthur Gill, Introduction to the theory of finite-state machines, 1962

“[The advent of systems theory] was achieved 
by viewing a system not via its internal 

structure, but via the mathematical laws which 
govern its observable behavior.” 
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oracle (model-based testing)
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algorithm
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MBT tool
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input sequences

output sequences
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counterexample



hypotheses in an ultrametric space



n is the length of a minimal-length counterexample

d(    ,     ) = 2-n

ultrametric for hypothesis quality



–Luca de Alfaro et. al., Discounting the future in systems theory, 2004

“In systems engineering, a potential bug in the 
far-away future is less troubling than a potential 

bug today.” 
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Why?
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131 hypotheses 

time spent 287 hours, 18 minutes and 42 seconds 

64,4% of time was spent on model-based testing 

131.435.188 test cases 
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Abstract

In Angluin’s L⇤ algorithm a learner constructs a sequence of hypotheses in order to learn
a regular language. Each hypothesis is consistent with a larger set of observations and is
described by a bigger model. From a behavioral perspective, however, a hypothesis is not
always better than the previous one, in the sense that the minimal length of a counterex-
ample that distinguishes a hypothesis from the target language may decrease. We present
a simple modification of the L⇤ algorithm that ensures that for subsequent hypotheses the
minimal length of a counterexample never decreases, which implies that the distance to
the target language never increases in a corresponding ultrametric. Preliminary experi-
mental evidence suggests that our algorithm speeds up learning in practical applications
by reducing the number of equivalence queries.
Keywords: Active learning, automata learning, distance metrics

1. Introduction

Automata learning techniques have become increasingly important for their applications to
a wide variety of software engineering problems, especially in the analysis and testing of
complex systems. Recently, they have been successfully applied for security protocol testing
(Shu and Lee, 2007), for the analysis of botnet command and control protocols (Cho et al.,
2010), in regression testing of telecommunication protocols (Hungar et al., 2003), and in
conformance testing of communication protocols (Aarts et al., 2014).

Automata learning aims to identify an unknown target language from examples of its
members and nonmembers (Gold, 1967). In active automata learning, introduced in the
seminal work by Angluin (1987), a learner identifies the language with the help of an oracle
(in contrast to passive learning, where the learner is provided with data). Angluin’s L⇤

algorithm is characterized by the iterative alternation between two phases. In the first phase,
the learner poses membership queries to construct a hypothesis. In the second phase it asks
an equivalence query to determine if the hypothesis correctly describes the language. The
oracle either signals success (if the hypothesis correctly describes the language) or provides a
counterexample that distinguishes the hypothesis and the language. The algorithm iterates

c� 2014 R. Smetsers, M. Volpato, F. Vaandrager & S. Verwer.
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