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Motivation 

¢  Some components cannot be tested in isolation 
separately from the overall system 

¢  Complex systems have the hierarchical structure 
and sometimes it is simpler to test components than 
the overall system 

¢  Formal methods for testing embedded components 
are different from those for testing in isolation 
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What if … not having a direct  
access to an IUT? 

Environment 

Implementation under test 
(IUT) Tester 

   Testing in context 

Check whether an IUT is a conforming  
implementation 
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TCP testing in context 

Some 
app TCP TCP 

I 

O 

U 

V 

X 

Y 

I = { initialization, exit } 
O = { successful_initialization, error, successful_exit } 
X = { SYN, FIN, RST, ACK, SYNACK, FIN_ACK } 
Y = { SYN, FIN, RST, ACK, SYNACK, FIN_ACK } 
U = { passive_open, active_open, send_data, close } 
V = { <nothing> } 

Context 

Observation points 

... 
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Transmission Control Protocol  
RFC 793: 
"...TCP is intended for use as 
a highly reliable host-to-host (symmetric) 
protocol between hosts in computer 
communication networks..." 
 
Used everywhere: Skype, 
web browsers … 
 

State model taken from 
School of Computer Science 
University of St Andrews 
http://tcp.cs.st-andrews.ac.uk/index.shtml?
page=tcp_fsm 

6 



FSM based testing 

Our assumptions… 
¢  All components are described by FSMs 
¢  A composed system can be described by an 
FSM (complete or partial, deterministic or 
nondeterministic) 
¢  Only one component can be faulty: all other 
components (the context) are fault free 
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Finite State Machine (FSM) 

S = (S, I, O, hS, s0) is an FSM 
-  S is a finite nonempty set of 

states with the initial state s0 
-  I and O are finite input and 

output alphabets 
-  hS ⊆ S × I × O × S is a behavior 

relation  

2 

i/o2 

i/o1,o3 

1 

i/o1 

i i i … o1 o2 o3 … FSM 
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FSM S = (S, I, O, hS, s0) 
can be 

-    deterministic if for each pair (s, i) ∈ S × I there exists at most one 
pair (o, sʹ′) ∈ O × S such that (s, i, o, sʹ′) ∈ hS
otherwise, S is nondeterministic  

-  complete if for each pair (s, i) ∈ S × I there exists 
(o, sʹ′) ∈ O × S such that (s, i, o, sʹ′) ∈ hS
otherwise, S is partial 

-   observable if for each triple (s, i, o) ∈ S × I × O there exists at most 
one state sʹ′ ∈ S such that (s, i, o, sʹ′) ∈ hS 
otherwise, S is nonobservable  

 
This one is nondeterministic,  
complete and observable 2 

i/o2 

i/o1, o3 

1 

i/o1 



Testing in isolation 

Test architecture 
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Test Generator 

Imp 

Spec 

comparator 

Conformance relation – the equivalence 



Test architecture for testing 
embedded components or 
testing in context 

There are two FSMs in the system 
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A1 IUT 

There is a direct access only to some inputs  
and outputs of an IUT 



Test architecture for testing 
in context 

No direct access to the inputs and outputs of an IUT 
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Context Emb 

Conformance relation – the external equivalence 

Tester 



How to derive a test suite for 
testing an embedded IUT? 
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Based on the specification 
of Emb 

Use tests derived for the 
Emb in isolation 

Use ordinary test methods 
for deriving corresponding 
external test suites 

⇓ 

The problem with partial 
controllability and 
observability 

Based on the specification of 
the overall composition 

Derive the composed FSM 

Test cases are derived for the 
composed FSM using FSM based 
testing methods 

⇓ 

There can be the guaranteed fault 
coverage under specific conditions! 

but 

Tests are too long as there are many 
infeasible FSMs in the Fault Domain 
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Composed FSM based fault models 



The composed FSM of two 
communicating FSMs 

- Parallel 
(asynchronous) 
composition 

- The component 
FSMs communicate 
in the dialogue 
mode 

-  One message in 
transit 

-  Slow environment 

Communicating FSMs 
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A1 A2 



Parallel composition of FSMs 
(coffee-shop) 

Coffee-shop 
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Espresso-
please 
Money 

Espresso-
served 
Thanks 
Sorry 
 

Coffee- 
machine 



Parallel composition for a  
coffee-shop 

 Waiter 
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a b 

c 

Ep/C 

L/B 

d 
B/E E/Es 

f M/T 

Ep/S 

M/T 

1 2 
B/E B/I 

C/L 

C/I 

Coffee machine 

Coffee shop 

A B 

M/T 

Ep/Es 

Ep/S M/T 



Live-locks and dead-locks 

The live-lock can occur when the dialogue becomes 
infinite 

⇓ 
A corresponding external input sequence is not 

allowed 
⇓ 

The composed FSM becomes partial 
 
Detecting live-locks usually is based on timeouts 
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Dead-locks 

The dead-lock can occur when components are partial 
and an unsafe (external or internal) input is applied 
to a component FSM 

⇓ 
A corresponding external input sequence is not 

allowed 
⇓ 

The composed FSM becomes partial 
 
For complete component FSMs there are no dead-locks 
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External equivalence 

! The number of FSMs can replace the embedded component 
FSM preserving the external behavior of the overall system 
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Context Emb 

Conformance relation – the external equivalence ≅ext 

Tester 



External equivalence (2) 

FSMs Emb and Emb' are 
externally equivalent if 
Context ◊ Emb  

and  
 Context ◊ Emb'  
 are equivalent  
  

 
! FSMs Emb and Emb' can be 

non-equivalent 

Specification and 
implementation 
systems 
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Context Emb 

Context Emb' 



Externally equivalent coffee 
machines 

 
   Coffee-machine 
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Can be replaced with a reduced  
coffee-machine 

coin/coffee 0 

If there is a waiter 

0 1 

coin/lamp 

Button/coffee 



Types of faults in Emb 
implementation 

¢  Output faults: the output of a transition 
 (s, i, o, s') is wrong compared with that of the 
specification embedded component FSM 

 
¢  Transfer faults: the next state of the transition  
    (s, i, o, s') is wrong compared with that of the 
specification embedded component FSM 
 
¢  Mixed faults 
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Fault model for testing in context 

Fault model <S, ≅, Context ◊ FDEmb> 
Our assumptions… 

• S = Context ◊ Emb is a deterministic and 
complete FSM 

• ≅ is the equivalence relation 
•  FDEmb is the set of all possible 

implementation FSMs of Emb which have 
no live-locks when combined with the 
Context 
24 



Test suite reminder 

A test case is a finite input 
sequence of the specification 
Context ◊ Emb. A test suite is a 
finite set of test cases 

 
A test suite TS is complete w.r.t. 

the FM <S, ≅, FD> if for each 
FSM Imp ∈ FD that is not 
equivalent to S 
 there exists a test case α ∈ TS 
that kills Imp 

 
 
 

 Specification and 
implementation under test 
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We assume that each implementation system has a reliable reset r  
that takes the implementation from each state to the initial state 
 

Context Emb 

Context Emb' 



Explicit enumeration 

Explicit enumeration can be 
used when the number of 
mutants of Emb is not big 

 
Faults in the embedded 

component are explicitly 
enumerated 

 
S = Context ◊ Emb  
Imp = Context ◊ Emb' 
 
! Imp can be partial if there are 

live-locks 
 
 

Derive the intersection  
 S ∩ Imp 

 
If S ∩ Imp is not complete 

then 
 derive a distinguishing 
sequence (a test case that 
kills a faulty Emb') 

 
! If there are no live-locks when 

combining the context with 
the Emb' then a sequence 
distinguishing externally 
nonequivalent Emb and 
Emb' always exists  
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Explicit enumeration (2) 

Advantage: Easy to implement 
Disadvantage: Cannot be applied when the number of 

faults (the number of mutants) is huge 
! Efficient algorithm for deriving distinguishing 

sequences for two FSMs should be developed 

! There are no methods how to derive a complete test 
suite w.r.t. the FM <S, ≅, Context ◊ FDEmb> 
without explicit enumeration 
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Using a bigger fault domain 
Fault model <S, ≅, ℑm> 

Our assumptions… 
• S = Context ◊ Emb is a deterministic and complete FSM 
• ≅ is the equivalence relation 
• Fault domain is a set of all complete deterministic FSMs with 

at most m states where m = ncontext ⋅ nemb 
 
ℑm ⊇ Context ◊ FDEmb where FDEmb is the set of all possible 

implementation FSMs of Emb with at most nemb states which 
have no live-locks when combined with the context 

 
A complete test suite w.r.t. <S, ≅, ℑm>  is complete w.r.t.  
<S, ≅, Context ◊ FDEmb>  
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W-method  

1.  For each two states sj and sk of the specification 
FSM Spec derive a distinguishing sequence γjk 
Gather all the sequences into a set W that is 
called a distinguishability set  

2.  For each state sj of the FSM Spec derive an input 
sequence that takes the FSM Spec to state sj 
from the initial state                                     
Gather all the sequences into a set CS that is 
called a state cover set 
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W-method (2) 
3. Concatenate each sequence of the state cover set V with the 

distinguishability set W: TS1 = V.W 
4. Concatenate each sequence of the state cover set V with the set 

iW for each input i: TS2 = V.I.W 
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… State cover set V 

W 

W 

i/o 

i/o 

W 
W 

! The shortest test suites are  
derived when FSM has 
a distinguishing sequence 
 
R. Dorofeeva, K. El-Fakih,  
S. Maag,R. Cavalli,  
N. Yevtushenko, “FSM-based  
conformance testing methods:  
A survey annotated with 
experimental evaluation,”  
Inform. & Softw. Tech., vol. 52,  
no. 12, pp. 1286–1297, 2010 



Distinguishing sequence 

¢  Given two states of a 
deterministic complete 
FSM Spec and a 
distinguishing sequence α,  
there is a unique output 
response at each state of 
Spec   

¢  After applying α at any 
state si  and observing an 
output response βi the 
initial state si before 
applying α becomes known 

 

… 

α/β1 

s1 s2 sm 

s1ʹ′ s2ʹ′ smʹ′ 

α/β2 
α/βm 

Distinguishing sequence α 
 
 

β1 ≠ β2 ≠ … ≠ βm 
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Using the W-method  
The fault model <S, ≅, ℑm> 
 
Advantage: well developed 
 
Disadvantages: what is m? If m is the product of the 

number of states of the Context and Emb then a 
test suite will be (extremely!!!) long 

¢  Many machines are infeasible - not each machine 
with at most m states is a composition of the 
Context and some Embʹ′ 

¢  Does not take into account that the Context is  
    fault-free 
 32 



Using the W-method (2) 

Disadvantages can be overcome by 
¢  Using a mutation machine 
¢  Tests can be shortened by deleting redundant transitions (as 
Ana mentioned yesterday…) 
 
1) L. P Lima and A. R. Cavalli, "A pragmatic approach to generating 
test sequences for embedded systems", Proc. of the 10th 
International Workshop on Testing of Communicating Systems, pp: 
125-140, 1997 
2) Yevtushenko, N., Cavalli, A.R., and Lima, L.P. (1998), Test 
minimization for testing in context. Proceedings of 11th IWTCS, pp: 
127-145 
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Mutation FSM for Emb 

Context FSM Composed FSM  
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i1/u 
v1/u 

a b 

i2/o1 
v2/o2 

i2/u 
v1/o2 
v2/o1 

Mutation FSM for 
the embedded FSM

A B 
i1/o1 i2/o1 

i1/o2 

i2/o1 

a b 
u/v1 
u/v2 

u/v1 
u/v2 

u/v1 
u/v2 

u/v1 
u/v2 

Mutation composed FSM 
is the composed FSM of 
Context ◊ MMEmb 



Mutation machine for testing in 
context 

Fault model <S, ≅, Sub(MM)> 
MM = Context ◊ MMEmb 

 
There exist methods for deriving complete test suites 

w.r.t. such a fault model without explicit mutant 
enumeration 

 
Known as: Grey box testing or Fault function or 

Mutation machine or Incremental testing 
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Mutation machine for testing in 
context (2) 

Mutation machine MM is obtained by combining the Mutation 
Machine for the Emb with the context 

Advantage: Tests are derived w.r.t. external inputs and outputs  
Disadvantages: a) MM is big enough 

      b) MM still has infeasible machines 
 
! The number of infeasible submachines can be reduced if several 

mutation machines are used 
! Tests can be shortened by deleting redundant transitions 
! Tests can be shortened if the composed mutation FSM has a 

separating (distinguishing) sequence 
 36 
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Embedded component based  
fault models 



The idea behind testing in context 

Implementation 
under test 

Context can be… 
-  Environment 
-  Another 
implementation 

The problem… 
-  No access is granted to 
internal channels 
 

Context 

requests 

responses 

int_outputs 

int_inputs 

Partial controllability and partial observabilty of an IUT 38 



Partial controllabilty when testing 
in context: a transition tour for an 
embedded component 

Context Emb 

39 

It is much harder to derive a transition tour when 
there is no direct access L  

i1/u1 

i2/u1 

u1/o1 

u2/o2 

How to check a transition under u2 in the embedded 
component? Or we cannot check it at all? 

Context IUT I U O 



Partial observability when testing 
in context 

Emb Context 

40 

i1/u1 

i1/u2 

u1/o1 

u2/o1 

Is this fine that at the initial state internal outputs 
cannot be distinguished or we still need to do this 
but after an appropriate external input sequence? 

IUT Context I U O 



And a transition tour is not enough 
for checking transfer faults … 

As a small example let’s consider… 
Password Authentication Protocol (PAP) 
¢  Authentication protocol that uses a password 
¢  Two entities share a password in advance and use the password 
as the basis of authentication 
¢  Considered to be unsecure, but that’s another business J 
 
How it works… 
¢  A client sends a username and a password 
¢  The server sends authentication: Ack (when OK!) or Nack (when 
not OK!) 
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One of FSMs for PAP 

RAR+ - «good» login 
RAR- - «bad» login 
SAA - Ack 
SAN – Nack 
 
 
 
 
 
 
    

close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR-/SAN 
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Deriving tests 

Under assumption… 
¢  We can ‘build’ an FSM that simulates a faulty implementation 
¢  There can be faults of two types: 
- Transition faults 
- Output faults 
 
Let’s rely on a transition tour 
¢  Idea: to traverse each FSM transition at least once 
¢  Theory: transition tour is known to detect all output faults 
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Transition tour for the PAP model 

Test suite:  
RAR+  
RAR-RAR-RAR- 

 
Expected output 

reactions:  
SAA 
SAN SAN SAN 
 
 
 
 
 
 

close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR-/SAN 
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Detecting an output fault 

Test suite:  
RAR+  
RAR-RAR-RAR- 

 
Expected:  
SAA 
SAN SAN SAN 
 
Observed:  
SAA 
SAN SAA SAN 

close 

open 

Ack 

RAR+/SAA 

RAR-/SAA 

RAR-/SAN 
try2 

try3 

RAR-/SAN 
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Trying to detect a transfer fault 

Test suite:  
RAR+  
RAR-RAR-RAR- 

 
Expected:  
SAA 
SAN SAN SAN 
 
Observed:  
SAA 
SAN SAN SAN 

close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR-/SAN 

A transition fault cannot be detected by a transition tour!!! 
46 



Let’s make the model complete first 

Define the undefined 
transitions… 

-  Whenever the access is 
prohibited, the reply is 
SAN, 

-  Whenever, the access is 
given, the reply is SAA 

 
 
 
 close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR-/SAN 

RAR+/SAA 
RAR+/SAA 

RAR-/SAN 

RAR+/SAN 

RAR-/SAN 
RAR+/SAA 
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Distinguishing sequences for state 
pairs in the running example 

(Ack, open) : RAR- RAR- RAR- RAR- RAR+ 

(Ack, try2) : RAR- RAR- RAR+ 
(Ack, try3) : RAR- RAR+ 
(Ack, close) : RAR+ 
(open, try2) : RAR- RAR- RAR+ 
(open, try3) : RAR- RAR+ 
(open, close) : RAR+ 
(try2, try3) : RAR- RAR+ 
(try2, close) : RAR+ 
(try3, close) : RAR+ 
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Deriving a test suite by W-method 

Idea : to reach each state and then to distinguish this state from any 
other 
Initial state Ack:  RAR- RAR- RAR- RAR- RAR+ 

       … 
     RAR+ 

       state Open:   RAR+ RAR- RAR- RAR- RAR- RAR+ 
      … 
     RAR+ RAR+ 

         state try2:    RAR+ RAR- RAR- RAR- RAR- RAR+ 
     RAR+ RAR- RAR- RAR+ 
     RAR+ RAR- RAR+ 
     RAR+ RAR+                                       … 
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Detecting a transfer fault  

Test sequence RAR+ RAR- RAR- RAR- RAR- RAR+ 
Spec reaction : SAA SAN SAN SAN SAN SAA 
Imp reaction :   SAA SAN SAN SAN SAN SAN 

RAR-/SAN 

close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR+/SAA 
RAR+/SAA 

RAR-/SAN 

RAR+/SAN 

RAR-/SAN 
RAR+/SAA 

close 

open 

Ack 

RAR+/SAA 

RAR-/SAN 

RAR-/SAN 
try2 

try3 

RAR-/SAN 

RAR+/SAA 

RAR+/SAA 

RAR-/SAN 
RAR+/SAN 

RAR-/SAN 
RAR+/SAA 

Spec Imp 
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Using tests derived for the 
isolated embedded component 

- Derive a complete test suite for Emb in isolation 
- Translate it into external inputs and outputs 

51 

Context Emb 

System Spec S 

PCO 

! Not all internal test cases can be translated 
What is the fault coverage of what is left? 
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Testing the coffee machine 

Input sequence B….  
cannot be applied to the  
coffee machine since 
the Waiter always starts  
with C 

a b 

c 

Ep/C 

L/B 

d 
B/E E/Es 

f M/T 

Ep/S 

M/T 

1 2 
B/E B/I 

C/L 

C/I 

A B 

M/T 

Ep/Es 

Ep/S M/T 



Internal and external tests 

An internal test case is an input sequence of the 
Emb that has traces over (UV)*  

An external test case is an input sequence of the S 
that has traces over (IO)*  
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Context Emb 

System Spec S 
V 

U I 

O 



What can be detected by external 
test cases 

A faulty implementation Emb' of the Emb can be detected 
by some external test case iff Emb' and Emb are 
externally non-equivalent 

 
Solution: To derive an Embedded Equivalent (EE) of the 

Emb that contains the behavior of each FSM Emb' that 
is externally equivalent to Emb and only them 

 
Then an internal test suite that detects each non-reduction 

Emb' of such EE can be translated into an external test 
case that detects (kills) the faulty Emb'  
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How to test the embedded 
component separately 

-  Derive an embedded equivalent EE of the Emb 
-  Derive a complete internal test suite TSint w.r.t. the 

fault model <EE, ≤, FDEmb> 
-  Translate the internal test suite TSint into an external 

test suite TSext  
 
Note: the test translation problem arises 
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Testing by solving an FSM 
equation 

All possible permissible behaviors of the Emb that do not change 
the external behavior of the composition can be captured by the 
general solution to the equation Context ◊ X ≅ S  

! EE is the largest solution to the equation 
! EE generally is a nondeterministic FSM 

56 

Context Emb 

System Spec S 

PCO 



Testing by solving an FSM 
equation (2) 

Let EE be the largest solution to the equation Context ◊ X ≅ S  
An FSM Emb' can replace the FSM Emb in the composition 

without violating expected external outputs iff Emb' is a 
reduction of EE 

! The largest solution describes how precisely the Emb behavior 
can be tested 

57 

Context Emb 

System Spec S 

PCO 



Testing by solving an FSM 
equation 

Fault model: <EE, ≤, FDEmb> where EE is the largest 
solution to Context ◊ X ≤ S that contains all 
conforming behaviors of Emb 

 
• Derive a complete test suite w.r.t. <EE, ≤, FDEmb>  
• Each internal test case can be translated it into external 

inputs and outputs  
 
Shorter tests w.r.t. <EE, ≤, FDEmb> are derived when EE 

has a separating (distinguishing) sequence 
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 Parallel composition for a 
coffee-shop 

Waiter 

59 

a b 

c 

Ep/C 

L/B 

d B/E E/Es 
f M/T 

Ep/S 

M/T 

1 2 
B/E B/I 

C/L 

C/I 

Coffee machine 

Coffee shop 

A B 

M/T 

Ep/Es 

Ep/S M/T 



Solving the equation for the 
coffee machine 

Solve the equation for the coffee machine 
Waiter ◊ X ≅ Coffee-shop  
The largest solution  
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1 2 

C/E B/E 

C/L 

All other input sequences take the largest solution 
to the DNC state, since they cannot be applied due to  
the waiter behavior 



Test suite derivation for a coffee 
machine 

A complete internal test 
suite w.r.t the fault 
model <EE, ≤, FDEmb>  

 
An external test case 
Ep.Ep 

The largest solution EE 
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1 2 
C/E B/E 

C/L 

Internal test suite (m ≤ 2) 
C.C 
C.B 



Test translation problem 
(formally) 

¢  FSMs Context and Emb 
 
¢  Internal test case γδ over 

(UV)* s.t. γ detects each 
embedded component 
implementation Emb' with 
the trace γδ 

¢  We should derive an external 
test case α over I* s.t. each 
embedded component FSM 
Emb' with the trace γδ is 
killed by α 

Testing the embedded 
component 
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Context Emb 

Spec S 

U 

V 

I 

O 

! Is not optimized yet 



Conclusions about FSM based 
testing in context 

•  Tests which check all detectable output and transfer 
faults in an embedded component, can be derived as 
tests for a composed FSM or for a nondeterministic 
embedded equivalent of the component 

•  In both cases, tests become shorter when deterministic 
and nondeterministic FSMs have a distinguishing 
sequence 

•  One should compromise between the preciseness and 
testing abilities of the model 

•  One should consider proper classes and heuristics 
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Some references for FSM 
based testing in context 
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¢  Lima, L. P.: A pragmatic method to generate test sequences for 
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13 (3), 141‑155 (2003) 

¢  K. El-Fakih and N. Yevtushenko, "Fault propagation by equation 
solving", Proc. of the IFIP 24th  International Conference on Formal 
Techniques for Networked and Distributed Systems,  Madrid, Spain,  
LNCS 3235, pp. 185-198 (2004) 

¢  El-Fakih, K., Petrenko A., Yevtushenko, N: "FSM Test Translation 
Through Context". 18th International Conference on Testing of 
Communicating Systems- TestCom 2006, New York, USA, Lecture 
Notes in Computer Science 3964, 245-258 (2006) 
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Complexity of related problems 
and how to decrease it… 
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Some primitive complexity into… 

…This is what it counts for an algorithm A… 

n is the size of the input of a problem P 

1) Time – can be considered as the number of primitive 
operations, in the worst case, to solve the problem 
// number of transitions of the corresponding Turing machine 

2) Space – can be considered as the size of memory to be used, 
in the worst case, to solve the problem 
// the length of a tape in use of the corresponding Turing machine 

Time Space 
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What is good and what is 
bad? 

When the time is 
polynomial 
¢  There exists an algorithm 
that solves the problem in a 
polynomial time 
¢  The problem is in P then 
 

When the time is not polynomial 
¢   Maybe, there exists an algorithm 
that verifies the solution in a 
polynomial time? 
Then the problem is in NP 
¢   Or maybe there exists an algorithm 
that solves the problem using a 
polynomial space? 
Then the problem is in PSPACE 

P is good, for small degrees of the polynomials 
NP and PSPACE – not really 
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Is it me, who didn’t fine a nice 
algorithm or nobody can? 

The problem P is NP-hard / PSPACE-hard if each problem 
from NP / PSPACE can be reduced to it  

P is not harder than any problem from NP / PSPACE 

The problem P is NP-complete / PSPACE-complete if  

-  It is in NP / PSPACE 

-  It is NP-hard / PSPACE-hard 

 

Completeness justifies the problem complexity 

SAT is a classical example of NP-complete problem 



SAT problem 

69 

The decision problem is being considered 
 
Input: Conjunctive Normal Form (CNF) formula f(x1, …, xn) 
Output: Does there exist an input vector i, such that  
f(i) ≠ (0, …, 0), i.e. f is satisfiable? 

 

is satisfiable, as f(1, 0, 1) = 1  
The SAT problem is NP-complete  

It will be used to derive distinguishing sequences… 

! Is also used for proving NP-completeness of a number of problems 
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When testing against FSMs… 

o  1) can be solved via an application of a homing / synchronizing 
sequence 

o  2) can be solved via an application of a distinguishing sequence 

1) Reaching each FSM state s 

2) Distinguishing s from any other FSM state 

3) Traversing a single transition to check the output 
and final state 



71 

Does there exist a 
distinguishing sequence? 

 

The decision problem is being considered 
 
DISTINUISHING problem 
Input: complete deterministic FSM S = (S, I, O, h), |S| = n 
Output: Does there exist a distinguishing sequence for S? 

 

The problem of checking the existence of a distinguishing 
sequence for deterministic machines is PSPACE-complete  
 

Lee, D., Yannakakis, M., 1994  
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Does there exist a 
distinguishing sequence? (2) 

 

The decision problem is being considered 
 
DISTINUISHING problem 
Input: complete nondeterministic FSM S = (S, I, O, h),  
|S| = n 
Output: Does there exist a distinguishing sequence for S? 

 

The problem of checking the existence of a distinguishing 
sequence for nondeterministic machines is PSPACE-
complete  
 



Bad… very bad ‘news’ 

Most of the problems in Model based testing are 
PSPACE-complete 

In particular… 
The problem of checking the existence of a distinguishing sequence 

for complete deterministic FSMs 
The problem of checking the existence of a distinguishing sequence 

for complete nondeterministic FSMs 
The problem of checking the existence of a homing / synchronizing 

sequence for complete (non-)deterministic FSMs 
 
Test sequences and checking sequences are somewhat hard to 

derive… 
In context, it is even harder! 
 
 
 
 

73 



How to decrease the complexity? 
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Utilizing scalable 
representations 
allows to ‘hide’ the 
complexity 
Research groups of R. 
Brayton, R. Jiang, А. 
Mishchenko, T. Villa, J. 
Tretmans, W. Kunz 

Considering specific types 
of bugs in the software, i.e. 
specific fault models 
Research groups of J. Offutt, F. 
Wotawa, N. Yevtushenko 

Providing effective heuristics 
Research groups of A. Zakrevskiy, 
H. Yenigün, R. Brayton, A. Cavalli 

Each of those is good for distinguished FSM classes 

Switching from preset to 
adaptive test derivation 
strategy 
Research groups of M. 
Yannakakis, A.K. Petrenko, N. 
Yevtushenko, A. Petrenko,  
R. Hierons  
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Distinguishing sequence 

¢  Distinguishing = separating 
for nondeterministic 
machines 

¢  The sequence α allows to 
detect the initial state of the 
machine under experiment 

¢  After applying α at any 
state si  and observing an 
output response βi the initial 
state si becomes known 

 

… 

α/β1 

s1 s2 sm 

s1ʹ′ s2ʹ′ smʹ′ 

α/β2 
α/βm 

Separating sequence α 
 
 

out(si, α) ∩ out(sj, α) = ∅ 
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Deriving a distinguishing sequence 
for nondeterministic FSM 

 i1 ij 
in … … 

… 
… 

21,ss

...,,, 2121
ʺ″ʺ″ʹ′ʹ′ ssss

Sʹ′ = {s1, s2} 

-  Derive a truncated successor 
tree (TST) 

∃ o1 ((s1, ij, o1, s1ʹ′, ) ∈ hS  &  (s2, 
ij, o1, s2ʹ′) ∈ hS & s1ʹ′ ≠ s2ʹ′) 

-  Truncating rules 

   Rule 1  P is the empty set 

   Rule 2 Set P contains a 
subset that labels another node 
of the path from the root to the 
node labeled by the set P 

   Rule 3 P contains singleton  

α sequence 
21,ss

Pʹ′ 
P 

α is a distinguishing sequence iff it 
labels the path truncated by Rule 1 
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Let’s derive some distinguishing 
sequence when testing in context… 

An FSM S = ({1, 2, 3, 4}, {a, b}, {0, 1}, hS, {1, 2, 3}) and its 
truncated successor tree  
There does not exist a distinguishing sequence for S 
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The length of a separating 
sequence 

 
Theoretically: The length of the separating sequence has  

length of the order  

⇓ 

Very huge (More than exponential !!!) complexity, in general 

⇓ 

We still do not know if this upper bound is reachable (???)  

⇓ 

However, can we reduce the corresponding test suite (???) 

2
2n
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Now, let’s decrease the complexity 

 

Simplifying a derivation of test sequences 
 
1) Using scalable representations 
We will see how sequential circuits and their HDL 
descriptions can be effectively used 
 
2) Considering specific types of faults 
We will see how specific types of FSM mutants and their 
HDL descriptions can simplify the thing 
 
3) Switching from preset to adaptive test derivation strategy 
We will see how some problems get into P 
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Scalable representations for 
deriving distinguishing sequence 

o  FSMs can be represented by sequential circuits 

⇓ 

o  FSM inputs, states and outputs are Boolean vectors 

   Transition relation is described by Boolean transition and 
output functions 

o  Combinational circuits correspond to FSMs with a single 
state  

⇓ 
Idea : to build a distinguishing sequence for two (or more) 
sequential circuits 
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Scalable representations for 
FSMs 

D2

A sequential circuit 

    s 
i 

00 01 10 11 

0 00/1 00/1 10/1 10/1 

1 11/0 00/1 11/0 10/1 

Corresponding FSM 

FSM state = set of latch states                                 FSM input/output = PI/PO 



82 

Miter based circuit equivalence 
checker (as an example) 

Circuit C       Circuit Cʹ′ 

Miter M combines both circuits, connecting the outputs with a XOR gate 

 

Circuits C and Cʹ′ are 
equivalent if CNFs, 
corresponding to m1 
and m2 are UNSAT 
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Checking the equivalence of two 
FSMs 

o  Given two FSMs S1 and S2, represent them as corresponding 
sequential circuits C1 and C2 

o  Derive combinational equivalents of length l for C1 and C2 
(correspond to l-equivalents of the machines S1 and S2) 

o  Derive a miter for these l-equivalents 

o  Solve the SAT problem for the outputs of the miter 

⇓ 
If the answer is UNSAT then circuits are equivalent 

Otherwise, a counter example is produced 

NOTE : counter example is a sequence that distinguishes S1 and S2  



84 

Idea for effective test derivation 

o  Given an embedded component Emb 

o  Describe the Emb behavior in some Hardware Description 
Language (HDL) 

o  Derive most probable HDL mutants for Emb 

o  Locate all the mutants in the fault domain FD 

o  Distinguish each mutant from the Emb HDL specification 

o  Add the corresponding distinguishing sequence into the test suite 

 

We derive tests with the guaranteed fault coverage w.r.t. the 
fault model <S, ≈ , FD> 
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Deriving distinguishing sequences based 
on HDL specifications 

HDL specification 

Miter of two 
corresponding 

circuits 

Distinguishing 
sequence Test suite 

Mutant of the HDL 
specification 

?Checking if the 
mutant is 

equivalent? 
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Considering specific faults / 
mutants 

 

o  When testing in context, under a white box assumption: 
specification FSM S can be initialized, but 

nondeterministic, partial, possibly non-observable 

o  Let’s enumerate only those faults that are more likely to 
appear in implementation (!!!that is how we decrease the 
complexity!!!) 

o  By changing an output or a transition in S, one obtains a 
mutant M   

o  Set of all mutants is a fault domain FD 

We derive tests with the guaranteed fault coverage w.r.t. the 
fault model <S, ≈ , FD> 
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How to derive tests 

 

We derive tests with the guaranteed fault 
coverage w.r.t. the fault model <S, ≈, FD> 

⇓ 
o  One has to know how to distinguish between  

    S and M ∈ FD  

o  A distinguishing sequence for a direct sum S ⊕ M 
needs to be derived 

o  The direct sum S ⊕ M  can be nondeterministic, partial, 
and possibly non-observable  
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Deriving an input sequence 
distinguishing (separating) two initial 
states of S ⊕ M  

 i1 ij 
in … … 

… 
… 

21,ss

...,,, 2121
ʺ″ʺ″ʹ′ʹ′ ssss

Sʹ′ = {s1, s2} 

-  Derive a truncated successor tree (TST) 

Transitions under ij are defined at both 
states s1 and s2  

∃ o1 ((s1, ij, o1, s1ʹ′, ) ∈ hS  &  (s2, ij, o1, s2ʹ′) 
∈ hS ) 

-  Truncating rules 

   Rule 1  P is the empty set 

   Rule 2 Set P contains a subset that 
labels another node of the path from the 
root to the node labeled by the set P 

   Rule 3 P contains singleton  

α sequence 
21,ss

Pʹ′ 
P 

α is distinguishing ⇔ it labels 
the path truncated by Rule 1 
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Deriving a test suite TS w.r.t.  
<S, ≈, FD> 

 

Input: FSM S that can be partial and non-observable 
Output: A test TS for S or a corresponding message 
Step 1 i = 0 
Step 2 
Derive a mutant Mi in the lexicographical order for the FSM S 
Derive a separating sequence α for an FSM Mi ⊕ S // direct sum 

If there is no separating sequence for the FSM Mi ⊕ S, then  
Return a corresponding message 
Otherwise, 
If α ∉ TS then add α into the test suite TS 

   i++, and go to Step 2 
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!

!

For example… 
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!

!

For example (cont-d)… 
¢  A distinguishing sequence 

for S ⊕ M1 can be  
    α = i2i1i2  
¢  Moreover, α = i2i1i2 is a 

distinguishing sequence  
    for S ⊕ M2  
 
 
    The test suite TS for  
FD = {M1, M2} is TS = {i2i1i2}  

S 

M1 M2 
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How trees can be used for 
testing (in context) 

 

 

o  What if S has a specific structure?   

o  S can still be 

-  Complete or partial 

-  Deterministic or non-deterministic 

-  Observable or non-observable 

BUT: S diagram has a tree structure!  

This fact simplifies the test derivation 
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When S has a tree structure 

 

Input: FSM S with a tree diagram 
Output: A test TS for S or a corresponding message 
Step 1 i = 0 
Step 2 Derive a mutant Mi in the lexicographical order for the 

FSM S 
Derive a separating sequence α for an FSM Mi ⊕ S 
by covering the faulty transition and going down the branch until 

Mi and S output reactions do not coincide  
If there is no separating sequence for the FSM Mi ⊕ S, then  
Return a corresponding message 
Otherwise, 
If α ∉ TS then add α into the test suite TS 

   i++, and go to Step 2 
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Any other restrictions on the 
Context 

What if the initial state of the Context is unknown? 

Emb Context 
U 

V 

Test 
sequences 

responses 

Channels U and V are not observable 

⇓ 

FSM specification for Context is nondeterministic 

⇓ 

One needs to first set the Context into a known state and then apply the test 
sequences 
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Homing sequences for 
nondeterministic FSMs 

¢  The sequence α allows to 
detect the final state of the 
machine under experiment 
after α application 

¢  After applying α at any state 
si  and observing an output 
response βi the final state si ʹ′ 
becomes known 

… 

α/β1 

s1 s2 sm 

s1ʹ′ s2ʹ′ smʹ′ 

α/β2 
α/βm 

Homing sequence α 
 
 

apply α + observe βi + draw a conclusion about si ʹ′ 

BUT! We saw the very (!!!) huge complexity,  

so… let’s just decrease it 
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How to decrease the complexity 
through adaptive experiments 

 

o  The experiment is now represented by a Test Case 

o  A Test Case is a connected single-input output-
complete observable initialized FSM with the 
acyclic transition graph 

Preset 
experiment 

Adaptive 
experiment 

the next input can be 
chosen based on 
previously observed 
outputs 
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Example for homing experiment 

Nondeterministic FSM 
! No homing 
sequence 

Adaptive homing experiment 
for nondeterministic FSM 
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Problem of existence of a homing test 
case for a complete nondeterministic FSM 

 

ADAPTIVE HOMING problem 
 
Input: complete observable nondeterministic FSM 
 S = (S, I, O, h), |S| = n 
Question: does there exist a homing test case for the FSM S? 
 
The problem can be reduced to that of checking if there exists 
a homing test case for each pair of FSM states 
 
Theorem. Adaptive Homing Problem for a complete 
observable FSM S = (S, I, O, h), |S| = n, is in P 
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Deriving homing test cases for 
nondeterministic FSMs 

Given an FSM S = (S, I, O, h),  
|S| = n, such that each state pair 
(i, j) is adaptively homing 
 
• We build the test case 
iteratively starting from the pair 
(1, 2) of states 
• We add other states one by 
one, to the set of initial states 
(the root of the tree) 
• Test cases of a type Pi,j are 
used at each step 

The height of the homing test case for S  does not exceed O(n3)  



Conclusions 
¢  Theoretically: almost all the problems in software testing 

and, moreover, testing in context that provide the 
guaranteed fault coverage have terrible (exponential or 
more!!!) complexity  

¢  Practically: methods and tools for decreasing the 
complexity seem to be promising 

⇓ 

New models (or new heuristics) need to appear and new 
methods and tools need to be provided to decrease 

the complexity  

⇓ 

We do have something for the future work J 
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Never alone… 

 
Original results presented here were obtained in 
collaboration with research groups lead by 

Prof. Ana Cavalli, 

Prof. Khaled El-Fakih, 

Profs Alexandre Petrenko & Alexandr K. Petrenko (both, J), 

PhD Stas Torgaev 

… 



Thank you! 


