
Testing in context:
framework and FSM
based test derivation

Nina Yevtushenko, Natalia Kushik
Tomsk State University

TAROT 2015

Outline
¢  Motivation
¢  Test architecture

- Testing in context or embedded testing
¢  Deriving complete test suites based on the composed FSM when

testing in context
-  Explicit enumeration
-  When the upper bound on the number of states is known
-  Mutation machine

¢  Deriving complete test suites based on the embedded component
when testing in context

¢  Distinguishing sequences for deterministic and nondeterministic
FSMs

¢  Complexity issues
¢  How to overcome these issues
¢  Conclusions

2

Motivation

¢  Some components cannot be tested in isolation
separately from the overall system

¢  Complex systems have the hierarchical structure
and sometimes it is simpler to test components than
the overall system

¢  Formal methods for testing embedded components
are different from those for testing in isolation

3

What if … not having a direct
access to an IUT?

Environment

Implementation under test
(IUT) Tester

 Testing in context

Check whether an IUT is a conforming
implementation

4

TCP testing in context

Some
app TCP TCP

I

O

U

V

X

Y

I = { initialization, exit }
O = { successful_initialization, error, successful_exit }
X = { SYN, FIN, RST, ACK, SYNACK, FIN_ACK }
Y = { SYN, FIN, RST, ACK, SYNACK, FIN_ACK }
U = { passive_open, active_open, send_data, close }
V = { <nothing> }

Context

Observation points

...

5

Transmission Control Protocol
RFC 793:
"...TCP is intended for use as
a highly reliable host-to-host (symmetric)
protocol between hosts in computer
communication networks..."

Used everywhere: Skype,
web browsers …

State model taken from
School of Computer Science
University of St Andrews
http://tcp.cs.st-andrews.ac.uk/index.shtml?
page=tcp_fsm

6

FSM based testing

Our assumptions…
¢  All components are described by FSMs
¢  A composed system can be described by an
FSM (complete or partial, deterministic or
nondeterministic)
¢  Only one component can be faulty: all other
components (the context) are fault free

7

Finite State Machine (FSM)

S = (S, I, O, hS, s0) is an FSM
-  S is a finite nonempty set of

states with the initial state s0
-  I and O are finite input and

output alphabets
-  hS ⊆ S × I × O × S is a behavior

relation

2

i/o2

i/o1,o3

1

i/o1

i i i … o1 o2 o3 … FSM

8

9

FSM S = (S, I, O, hS, s0)
can be

- deterministic if for each pair (s, i) ∈ S × I there exists at most one
pair (o, sʹ′) ∈ O × S such that (s, i, o, sʹ′) ∈ hS
otherwise, S is nondeterministic

-  complete if for each pair (s, i) ∈ S × I there exists
(o, sʹ′) ∈ O × S such that (s, i, o, sʹ′) ∈ hS
otherwise, S is partial

- observable if for each triple (s, i, o) ∈ S × I × O there exists at most
one state sʹ′ ∈ S such that (s, i, o, sʹ′) ∈ hS
otherwise, S is nonobservable

This one is nondeterministic,
complete and observable 2

i/o2

i/o1, o3

1

i/o1

Testing in isolation

Test architecture

10

Test Generator

Imp

Spec

comparator

Conformance relation – the equivalence

Test architecture for testing
embedded components or
testing in context

There are two FSMs in the system

11

A1 IUT

There is a direct access only to some inputs
and outputs of an IUT

Test architecture for testing
in context

No direct access to the inputs and outputs of an IUT

12

Context Emb

Conformance relation – the external equivalence

Tester

How to derive a test suite for
testing an embedded IUT?

13

Based on the specification
of Emb

Use tests derived for the
Emb in isolation

Use ordinary test methods
for deriving corresponding
external test suites

⇓

The problem with partial
controllability and
observability

Based on the specification of
the overall composition

Derive the composed FSM

Test cases are derived for the
composed FSM using FSM based
testing methods

⇓

There can be the guaranteed fault
coverage under specific conditions!

but

Tests are too long as there are many
infeasible FSMs in the Fault Domain

14

Composed FSM based fault models

The composed FSM of two
communicating FSMs

- Parallel
(asynchronous)
composition

- The component
FSMs communicate
in the dialogue
mode

-  One message in
transit

-  Slow environment

Communicating FSMs

15

A1 A2

Parallel composition of FSMs
(coffee-shop)

Coffee-shop

16

Espresso-
please
Money

Espresso-
served
Thanks
Sorry

Coffee-
machine

Parallel composition for a
coffee-shop

 Waiter

17

a b

c

Ep/C

L/B

d
B/E E/Es

f M/T

Ep/S

M/T

1 2
B/E B/I

C/L

C/I

Coffee machine

Coffee shop

A B

M/T

Ep/Es

Ep/S M/T

Live-locks and dead-locks

The live-lock can occur when the dialogue becomes
infinite

⇓
A corresponding external input sequence is not

allowed
⇓

The composed FSM becomes partial

Detecting live-locks usually is based on timeouts

18

Dead-locks

The dead-lock can occur when components are partial
and an unsafe (external or internal) input is applied
to a component FSM

⇓
A corresponding external input sequence is not

allowed
⇓

The composed FSM becomes partial

For complete component FSMs there are no dead-locks

19

External equivalence

! The number of FSMs can replace the embedded component
FSM preserving the external behavior of the overall system

20

Context Emb

Conformance relation – the external equivalence ≅ext

Tester

External equivalence (2)

FSMs Emb and Emb' are
externally equivalent if
Context ◊ Emb

and
 Context ◊ Emb'
 are equivalent

! FSMs Emb and Emb' can be

non-equivalent

Specification and
implementation
systems

21

Context Emb

Context Emb'

Externally equivalent coffee
machines

 Coffee-machine

22

Can be replaced with a reduced
coffee-machine

coin/coffee 0

If there is a waiter

0 1

coin/lamp

Button/coffee

Types of faults in Emb
implementation

¢  Output faults: the output of a transition
 (s, i, o, s') is wrong compared with that of the
specification embedded component FSM

¢  Transfer faults: the next state of the transition
 (s, i, o, s') is wrong compared with that of the
specification embedded component FSM

¢  Mixed faults

23

Fault model for testing in context

Fault model <S, ≅, Context ◊ FDEmb>
Our assumptions…

• S = Context ◊ Emb is a deterministic and
complete FSM

• ≅ is the equivalence relation
•  FDEmb is the set of all possible

implementation FSMs of Emb which have
no live-locks when combined with the
Context
24

Test suite reminder

A test case is a finite input
sequence of the specification
Context ◊ Emb. A test suite is a
finite set of test cases

A test suite TS is complete w.r.t.

the FM <S, ≅, FD> if for each
FSM Imp ∈ FD that is not
equivalent to S
 there exists a test case α ∈ TS
that kills Imp

 Specification and
implementation under test

25

We assume that each implementation system has a reliable reset r
that takes the implementation from each state to the initial state

Context Emb

Context Emb'

Explicit enumeration

Explicit enumeration can be
used when the number of
mutants of Emb is not big

Faults in the embedded

component are explicitly
enumerated

S = Context ◊ Emb
Imp = Context ◊ Emb'

! Imp can be partial if there are

live-locks

Derive the intersection
 S ∩ Imp

If S ∩ Imp is not complete

then
 derive a distinguishing
sequence (a test case that
kills a faulty Emb')

! If there are no live-locks when

combining the context with
the Emb' then a sequence
distinguishing externally
nonequivalent Emb and
Emb' always exists

 26

Explicit enumeration (2)

Advantage: Easy to implement
Disadvantage: Cannot be applied when the number of

faults (the number of mutants) is huge
! Efficient algorithm for deriving distinguishing

sequences for two FSMs should be developed

! There are no methods how to derive a complete test
suite w.r.t. the FM <S, ≅, Context ◊ FDEmb>
without explicit enumeration

27

Using a bigger fault domain
Fault model <S, ≅, ℑm>

Our assumptions…
• S = Context ◊ Emb is a deterministic and complete FSM
• ≅ is the equivalence relation
• Fault domain is a set of all complete deterministic FSMs with

at most m states where m = ncontext ⋅ nemb

ℑm ⊇ Context ◊ FDEmb where FDEmb is the set of all possible

implementation FSMs of Emb with at most nemb states which
have no live-locks when combined with the context

A complete test suite w.r.t. <S, ≅, ℑm> is complete w.r.t.
<S, ≅, Context ◊ FDEmb>

28

W-method

1.  For each two states sj and sk of the specification
FSM Spec derive a distinguishing sequence γjk
Gather all the sequences into a set W that is
called a distinguishability set

2.  For each state sj of the FSM Spec derive an input
sequence that takes the FSM Spec to state sj
from the initial state
Gather all the sequences into a set CS that is
called a state cover set

29

W-method (2)
3. Concatenate each sequence of the state cover set V with the

distinguishability set W: TS1 = V.W
4. Concatenate each sequence of the state cover set V with the set

iW for each input i: TS2 = V.I.W

30

… State cover set V

W

W

i/o

i/o

W
W

! The shortest test suites are
derived when FSM has
a distinguishing sequence

R. Dorofeeva, K. El-Fakih,
S. Maag,R. Cavalli,
N. Yevtushenko, “FSM-based
conformance testing methods:
A survey annotated with
experimental evaluation,”
Inform. & Softw. Tech., vol. 52,
no. 12, pp. 1286–1297, 2010

Distinguishing sequence

¢  Given two states of a
deterministic complete
FSM Spec and a
distinguishing sequence α,
there is a unique output
response at each state of
Spec

¢  After applying α at any
state si and observing an
output response βi the
initial state si before
applying α becomes known

…

α/β1

s1 s2 sm

s1ʹ′ s2ʹ′ smʹ′

α/β2
α/βm

Distinguishing sequence α

β1 ≠ β2 ≠ … ≠ βm

31

Using the W-method
The fault model <S, ≅, ℑm>

Advantage: well developed

Disadvantages: what is m? If m is the product of the

number of states of the Context and Emb then a
test suite will be (extremely!!!) long

¢  Many machines are infeasible - not each machine
with at most m states is a composition of the
Context and some Embʹ′

¢  Does not take into account that the Context is
 fault-free
 32

Using the W-method (2)

Disadvantages can be overcome by
¢  Using a mutation machine
¢  Tests can be shortened by deleting redundant transitions (as
Ana mentioned yesterday…)

1) L. P Lima and A. R. Cavalli, "A pragmatic approach to generating
test sequences for embedded systems", Proc. of the 10th
International Workshop on Testing of Communicating Systems, pp:
125-140, 1997
2) Yevtushenko, N., Cavalli, A.R., and Lima, L.P. (1998), Test
minimization for testing in context. Proceedings of 11th IWTCS, pp:
127-145

33

Mutation FSM for Emb

Context FSM Composed FSM

34

i1/u
v1/u

a b

i2/o1
v2/o2

i2/u
v1/o2
v2/o1

Mutation FSM for
the embedded FSM

A B
i1/o1 i2/o1

i1/o2

i2/o1

a b
u/v1
u/v2

u/v1
u/v2

u/v1
u/v2

u/v1
u/v2

Mutation composed FSM
is the composed FSM of
Context ◊ MMEmb

Mutation machine for testing in
context

Fault model <S, ≅, Sub(MM)>
MM = Context ◊ MMEmb

There exist methods for deriving complete test suites

w.r.t. such a fault model without explicit mutant
enumeration

Known as: Grey box testing or Fault function or

Mutation machine or Incremental testing

35

Mutation machine for testing in
context (2)

Mutation machine MM is obtained by combining the Mutation
Machine for the Emb with the context

Advantage: Tests are derived w.r.t. external inputs and outputs
Disadvantages: a) MM is big enough

 b) MM still has infeasible machines

! The number of infeasible submachines can be reduced if several

mutation machines are used
! Tests can be shortened by deleting redundant transitions
! Tests can be shortened if the composed mutation FSM has a

separating (distinguishing) sequence
 36

37

Embedded component based
fault models

The idea behind testing in context

Implementation
under test

Context can be…
-  Environment
-  Another
implementation

The problem…
-  No access is granted to
internal channels

Context

requests

responses

int_outputs

int_inputs

Partial controllability and partial observabilty of an IUT 38

Partial controllabilty when testing
in context: a transition tour for an
embedded component

Context Emb

39

It is much harder to derive a transition tour when
there is no direct access L

i1/u1

i2/u1

u1/o1

u2/o2

How to check a transition under u2 in the embedded
component? Or we cannot check it at all?

Context IUT I U O

Partial observability when testing
in context

Emb Context

40

i1/u1

i1/u2

u1/o1

u2/o1

Is this fine that at the initial state internal outputs
cannot be distinguished or we still need to do this
but after an appropriate external input sequence?

IUT Context I U O

And a transition tour is not enough
for checking transfer faults …

As a small example let’s consider…
Password Authentication Protocol (PAP)
¢  Authentication protocol that uses a password
¢  Two entities share a password in advance and use the password
as the basis of authentication
¢  Considered to be unsecure, but that’s another business J

How it works…
¢  A client sends a username and a password
¢  The server sends authentication: Ack (when OK!) or Nack (when
not OK!)

41

One of FSMs for PAP

RAR+ - «good» login
RAR- - «bad» login
SAA - Ack
SAN – Nack

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

42

Deriving tests

Under assumption…
¢  We can ‘build’ an FSM that simulates a faulty implementation
¢  There can be faults of two types:
- Transition faults
- Output faults

Let’s rely on a transition tour
¢  Idea: to traverse each FSM transition at least once
¢  Theory: transition tour is known to detect all output faults

43

Transition tour for the PAP model

Test suite:
RAR+
RAR-RAR-RAR-

Expected output

reactions:
SAA
SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

44

Detecting an output fault

Test suite:
RAR+
RAR-RAR-RAR-

Expected:
SAA
SAN SAN SAN

Observed:
SAA
SAN SAA SAN

close

open

Ack

RAR+/SAA

RAR-/SAA

RAR-/SAN
try2

try3

RAR-/SAN

45

Trying to detect a transfer fault

Test suite:
RAR+
RAR-RAR-RAR-

Expected:
SAA
SAN SAN SAN

Observed:
SAA
SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

A transition fault cannot be detected by a transition tour!!!
46

Let’s make the model complete first

Define the undefined
transitions…

-  Whenever the access is
prohibited, the reply is
SAN,

-  Whenever, the access is
given, the reply is SAA

 close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

RAR+/SAA
RAR+/SAA

RAR-/SAN

RAR+/SAN

RAR-/SAN
RAR+/SAA

47

Distinguishing sequences for state
pairs in the running example

(Ack, open) : RAR- RAR- RAR- RAR- RAR+

(Ack, try2) : RAR- RAR- RAR+
(Ack, try3) : RAR- RAR+
(Ack, close) : RAR+
(open, try2) : RAR- RAR- RAR+
(open, try3) : RAR- RAR+
(open, close) : RAR+
(try2, try3) : RAR- RAR+
(try2, close) : RAR+
(try3, close) : RAR+

48

Deriving a test suite by W-method

Idea : to reach each state and then to distinguish this state from any
other
Initial state Ack: RAR- RAR- RAR- RAR- RAR+

 …
 RAR+

 state Open: RAR+ RAR- RAR- RAR- RAR- RAR+
 …
 RAR+ RAR+

 state try2: RAR+ RAR- RAR- RAR- RAR- RAR+
 RAR+ RAR- RAR- RAR+
 RAR+ RAR- RAR+
 RAR+ RAR+ …

49

Detecting a transfer fault

Test sequence RAR+ RAR- RAR- RAR- RAR- RAR+
Spec reaction : SAA SAN SAN SAN SAN SAA
Imp reaction : SAA SAN SAN SAN SAN SAN

RAR-/SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR+/SAA
RAR+/SAA

RAR-/SAN

RAR+/SAN

RAR-/SAN
RAR+/SAA

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

RAR+/SAA

RAR+/SAA

RAR-/SAN
RAR+/SAN

RAR-/SAN
RAR+/SAA

Spec Imp

50

Using tests derived for the
isolated embedded component

- Derive a complete test suite for Emb in isolation
- Translate it into external inputs and outputs

51

Context Emb

System Spec S

PCO

! Not all internal test cases can be translated
What is the fault coverage of what is left?

52

Testing the coffee machine

Input sequence B….
cannot be applied to the
coffee machine since
the Waiter always starts
with C

a b

c

Ep/C

L/B

d
B/E E/Es

f M/T

Ep/S

M/T

1 2
B/E B/I

C/L

C/I

A B

M/T

Ep/Es

Ep/S M/T

Internal and external tests

An internal test case is an input sequence of the
Emb that has traces over (UV)*

An external test case is an input sequence of the S
that has traces over (IO)*

53

Context Emb

System Spec S
V

U I

O

What can be detected by external
test cases

A faulty implementation Emb' of the Emb can be detected
by some external test case iff Emb' and Emb are
externally non-equivalent

Solution: To derive an Embedded Equivalent (EE) of the

Emb that contains the behavior of each FSM Emb' that
is externally equivalent to Emb and only them

Then an internal test suite that detects each non-reduction

Emb' of such EE can be translated into an external test
case that detects (kills) the faulty Emb'

54

How to test the embedded
component separately

-  Derive an embedded equivalent EE of the Emb
-  Derive a complete internal test suite TSint w.r.t. the

fault model <EE, ≤, FDEmb>
-  Translate the internal test suite TSint into an external

test suite TSext

Note: the test translation problem arises

55

Testing by solving an FSM
equation

All possible permissible behaviors of the Emb that do not change
the external behavior of the composition can be captured by the
general solution to the equation Context ◊ X ≅ S

! EE is the largest solution to the equation
! EE generally is a nondeterministic FSM

56

Context Emb

System Spec S

PCO

Testing by solving an FSM
equation (2)

Let EE be the largest solution to the equation Context ◊ X ≅ S
An FSM Emb' can replace the FSM Emb in the composition

without violating expected external outputs iff Emb' is a
reduction of EE

! The largest solution describes how precisely the Emb behavior
can be tested

57

Context Emb

System Spec S

PCO

Testing by solving an FSM
equation

Fault model: <EE, ≤, FDEmb> where EE is the largest
solution to Context ◊ X ≤ S that contains all
conforming behaviors of Emb

• Derive a complete test suite w.r.t. <EE, ≤, FDEmb>
• Each internal test case can be translated it into external

inputs and outputs

Shorter tests w.r.t. <EE, ≤, FDEmb> are derived when EE

has a separating (distinguishing) sequence

58

 Parallel composition for a
coffee-shop

Waiter

59

a b

c

Ep/C

L/B

d B/E E/Es
f M/T

Ep/S

M/T

1 2
B/E B/I

C/L

C/I

Coffee machine

Coffee shop

A B

M/T

Ep/Es

Ep/S M/T

Solving the equation for the
coffee machine

Solve the equation for the coffee machine
Waiter ◊ X ≅ Coffee-shop
The largest solution

60

1 2

C/E B/E

C/L

All other input sequences take the largest solution
to the DNC state, since they cannot be applied due to
the waiter behavior

Test suite derivation for a coffee
machine

A complete internal test
suite w.r.t the fault
model <EE, ≤, FDEmb>

An external test case
Ep.Ep

The largest solution EE

61

1 2
C/E B/E

C/L

Internal test suite (m ≤ 2)
C.C
C.B

Test translation problem
(formally)

¢  FSMs Context and Emb

¢  Internal test case γδ over

(UV)* s.t. γ detects each
embedded component
implementation Emb' with
the trace γδ

¢  We should derive an external
test case α over I* s.t. each
embedded component FSM
Emb' with the trace γδ is
killed by α

Testing the embedded
component

62

Context Emb

Spec S

U

V

I

O

! Is not optimized yet

Conclusions about FSM based
testing in context

•  Tests which check all detectable output and transfer
faults in an embedded component, can be derived as
tests for a composed FSM or for a nondeterministic
embedded equivalent of the component

•  In both cases, tests become shorter when deterministic
and nondeterministic FSMs have a distinguishing
sequence

•  One should compromise between the preciseness and
testing abilities of the model

•  One should consider proper classes and heuristics

63

64

Some references for FSM
based testing in context

¢  Petrenko, A., Yevtushenko, N., Bochmann, G. v., Dssouli, R.: Testing
in context: framework and test derivation, Computer communications
19, 1236-1249 (1996)

¢  Petrenko, A., Yevtushenko, N., Bochmann, G. v.: Fault models for
testing in context. Proc. International Conference on Formal
Techniques for Networked and Distributed Systems, 125-140 (1996)

¢  Lima, L. P.: A pragmatic method to generate test sequences for
embedded systems, Ph.D. Thesis, Institute National des
Telecommunications, Evry, France (1998)

¢  Anido, R., Cavalli, A. R., Lima, L., Yevtushenko, N. Test suite
minimization for testing in context. Soft. Test. Verif. Reliab.,
13 (3), 141‑155 (2003)

¢  K. El-Fakih and N. Yevtushenko, "Fault propagation by equation
solving", Proc. of the IFIP 24th International Conference on Formal
Techniques for Networked and Distributed Systems, Madrid, Spain,
LNCS 3235, pp. 185-198 (2004)

¢  El-Fakih, K., Petrenko A., Yevtushenko, N: "FSM Test Translation
Through Context". 18th International Conference on Testing of
Communicating Systems- TestCom 2006, New York, USA, Lecture
Notes in Computer Science 3964, 245-258 (2006)

65

Complexity of related problems
and how to decrease it…

66

Some primitive complexity into…

…This is what it counts for an algorithm A…

n is the size of the input of a problem P

1) Time – can be considered as the number of primitive
operations, in the worst case, to solve the problem
// number of transitions of the corresponding Turing machine

2) Space – can be considered as the size of memory to be used,
in the worst case, to solve the problem
// the length of a tape in use of the corresponding Turing machine

Time Space

67

What is good and what is
bad?

When the time is
polynomial
¢  There exists an algorithm
that solves the problem in a
polynomial time
¢  The problem is in P then

When the time is not polynomial
¢  Maybe, there exists an algorithm
that verifies the solution in a
polynomial time?
Then the problem is in NP
¢  Or maybe there exists an algorithm
that solves the problem using a
polynomial space?
Then the problem is in PSPACE

P is good, for small degrees of the polynomials
NP and PSPACE – not really

68

Is it me, who didn’t fine a nice
algorithm or nobody can?

The problem P is NP-hard / PSPACE-hard if each problem
from NP / PSPACE can be reduced to it

P is not harder than any problem from NP / PSPACE

The problem P is NP-complete / PSPACE-complete if

-  It is in NP / PSPACE

-  It is NP-hard / PSPACE-hard

Completeness justifies the problem complexity

SAT is a classical example of NP-complete problem

SAT problem

69

The decision problem is being considered

Input: Conjunctive Normal Form (CNF) formula f(x1, …, xn)
Output: Does there exist an input vector i, such that
f(i) ≠ (0, …, 0), i.e. f is satisfiable?

is satisfiable, as f(1, 0, 1) = 1
The SAT problem is NP-complete

It will be used to derive distinguishing sequences…

! Is also used for proving NP-completeness of a number of problems

70

When testing against FSMs…

o  1) can be solved via an application of a homing / synchronizing
sequence

o  2) can be solved via an application of a distinguishing sequence

1) Reaching each FSM state s

2) Distinguishing s from any other FSM state

3) Traversing a single transition to check the output
and final state

71

Does there exist a
distinguishing sequence?

The decision problem is being considered

DISTINUISHING problem
Input: complete deterministic FSM S = (S, I, O, h), |S| = n
Output: Does there exist a distinguishing sequence for S?

The problem of checking the existence of a distinguishing
sequence for deterministic machines is PSPACE-complete

Lee, D., Yannakakis, M., 1994

72

Does there exist a
distinguishing sequence? (2)

The decision problem is being considered

DISTINUISHING problem
Input: complete nondeterministic FSM S = (S, I, O, h),
|S| = n
Output: Does there exist a distinguishing sequence for S?

The problem of checking the existence of a distinguishing
sequence for nondeterministic machines is PSPACE-
complete

Bad… very bad ‘news’

Most of the problems in Model based testing are
PSPACE-complete

In particular…
The problem of checking the existence of a distinguishing sequence

for complete deterministic FSMs
The problem of checking the existence of a distinguishing sequence

for complete nondeterministic FSMs
The problem of checking the existence of a homing / synchronizing

sequence for complete (non-)deterministic FSMs

Test sequences and checking sequences are somewhat hard to

derive…
In context, it is even harder!

73

How to decrease the complexity?

74

Utilizing scalable
representations
allows to ‘hide’ the
complexity
Research groups of R.
Brayton, R. Jiang, А.
Mishchenko, T. Villa, J.
Tretmans, W. Kunz

Considering specific types
of bugs in the software, i.e.
specific fault models
Research groups of J. Offutt, F.
Wotawa, N. Yevtushenko

Providing effective heuristics
Research groups of A. Zakrevskiy,
H. Yenigün, R. Brayton, A. Cavalli

Each of those is good for distinguished FSM classes

Switching from preset to
adaptive test derivation
strategy
Research groups of M.
Yannakakis, A.K. Petrenko, N.
Yevtushenko, A. Petrenko,
R. Hierons

75

Distinguishing sequence

¢  Distinguishing = separating
for nondeterministic
machines

¢  The sequence α allows to
detect the initial state of the
machine under experiment

¢  After applying α at any
state si and observing an
output response βi the initial
state si becomes known

…

α/β1

s1 s2 sm

s1ʹ′ s2ʹ′ smʹ′

α/β2
α/βm

Separating sequence α

out(si, α) ∩ out(sj, α) = ∅

76

Deriving a distinguishing sequence
for nondeterministic FSM

 i1 ij
in … …

…
…

21,ss

...,,, 2121
ʺ″ʺ″ʹ′ʹ′ ssss

Sʹ′ = {s1, s2}

-  Derive a truncated successor
tree (TST)

∃ o1 ((s1, ij, o1, s1ʹ′,) ∈ hS & (s2,
ij, o1, s2ʹ′) ∈ hS & s1ʹ′ ≠ s2ʹ′)

-  Truncating rules

 Rule 1 P is the empty set

 Rule 2 Set P contains a
subset that labels another node
of the path from the root to the
node labeled by the set P

 Rule 3 P contains singleton

α sequence
21,ss

Pʹ′
P

α is a distinguishing sequence iff it
labels the path truncated by Rule 1

77

Let’s derive some distinguishing
sequence when testing in context…

An FSM S = ({1, 2, 3, 4}, {a, b}, {0, 1}, hS, {1, 2, 3}) and its
truncated successor tree
There does not exist a distinguishing sequence for S

78

The length of a separating
sequence

Theoretically: The length of the separating sequence has

length of the order

⇓

Very huge (More than exponential !!!) complexity, in general

⇓

We still do not know if this upper bound is reachable (???)

⇓

However, can we reduce the corresponding test suite (???)

2
2n

79

Now, let’s decrease the complexity

Simplifying a derivation of test sequences

1) Using scalable representations
We will see how sequential circuits and their HDL
descriptions can be effectively used

2) Considering specific types of faults
We will see how specific types of FSM mutants and their
HDL descriptions can simplify the thing

3) Switching from preset to adaptive test derivation strategy
We will see how some problems get into P

80

Scalable representations for
deriving distinguishing sequence

o  FSMs can be represented by sequential circuits

⇓

o  FSM inputs, states and outputs are Boolean vectors

 Transition relation is described by Boolean transition and
output functions

o  Combinational circuits correspond to FSMs with a single
state

⇓
Idea : to build a distinguishing sequence for two (or more)
sequential circuits

81

Scalable representations for
FSMs

D2

A sequential circuit

 s
i

00 01 10 11

0 00/1 00/1 10/1 10/1

1 11/0 00/1 11/0 10/1

Corresponding FSM

FSM state = set of latch states FSM input/output = PI/PO

82

Miter based circuit equivalence
checker (as an example)

Circuit C Circuit Cʹ′

Miter M combines both circuits, connecting the outputs with a XOR gate

Circuits C and Cʹ′ are
equivalent if CNFs,
corresponding to m1
and m2 are UNSAT

83

Checking the equivalence of two
FSMs

o  Given two FSMs S1 and S2, represent them as corresponding
sequential circuits C1 and C2

o  Derive combinational equivalents of length l for C1 and C2
(correspond to l-equivalents of the machines S1 and S2)

o  Derive a miter for these l-equivalents

o  Solve the SAT problem for the outputs of the miter

⇓
If the answer is UNSAT then circuits are equivalent

Otherwise, a counter example is produced

NOTE : counter example is a sequence that distinguishes S1 and S2

84

Idea for effective test derivation

o  Given an embedded component Emb

o  Describe the Emb behavior in some Hardware Description
Language (HDL)

o  Derive most probable HDL mutants for Emb

o  Locate all the mutants in the fault domain FD

o  Distinguish each mutant from the Emb HDL specification

o  Add the corresponding distinguishing sequence into the test suite

We derive tests with the guaranteed fault coverage w.r.t. the
fault model <S, ≈ , FD>

85

Deriving distinguishing sequences based
on HDL specifications

HDL specification

Miter of two
corresponding

circuits

Distinguishing
sequence Test suite

Mutant of the HDL
specification

?Checking if the
mutant is

equivalent?

86

Considering specific faults /
mutants

o  When testing in context, under a white box assumption:
specification FSM S can be initialized, but

nondeterministic, partial, possibly non-observable

o  Let’s enumerate only those faults that are more likely to
appear in implementation (!!!that is how we decrease the
complexity!!!)

o  By changing an output or a transition in S, one obtains a
mutant M

o  Set of all mutants is a fault domain FD

We derive tests with the guaranteed fault coverage w.r.t. the
fault model <S, ≈ , FD>

87

How to derive tests

We derive tests with the guaranteed fault
coverage w.r.t. the fault model <S, ≈, FD>

⇓
o  One has to know how to distinguish between

 S and M ∈ FD

o  A distinguishing sequence for a direct sum S ⊕ M
needs to be derived

o  The direct sum S ⊕ M can be nondeterministic, partial,
and possibly non-observable

88

Deriving an input sequence
distinguishing (separating) two initial
states of S ⊕ M

 i1 ij
in … …

…
…

21,ss

...,,, 2121
ʺ″ʺ″ʹ′ʹ′ ssss

Sʹ′ = {s1, s2}

-  Derive a truncated successor tree (TST)

Transitions under ij are defined at both
states s1 and s2

∃ o1 ((s1, ij, o1, s1ʹ′,) ∈ hS & (s2, ij, o1, s2ʹ′)
∈ hS)

-  Truncating rules

 Rule 1 P is the empty set

 Rule 2 Set P contains a subset that
labels another node of the path from the
root to the node labeled by the set P

 Rule 3 P contains singleton

α sequence
21,ss

Pʹ′
P

α is distinguishing ⇔ it labels
the path truncated by Rule 1

89

Deriving a test suite TS w.r.t.
<S, ≈, FD>

Input: FSM S that can be partial and non-observable
Output: A test TS for S or a corresponding message
Step 1 i = 0
Step 2
Derive a mutant Mi in the lexicographical order for the FSM S
Derive a separating sequence α for an FSM Mi ⊕ S // direct sum

If there is no separating sequence for the FSM Mi ⊕ S, then
Return a corresponding message
Otherwise,
If α ∉ TS then add α into the test suite TS

 i++, and go to Step 2

90

!

!

For example…
Tr

an
sf

er
 M

ut
an

t M
1

Tr
an

sf
er

 M
ut

an
t M

2

91

!

!

For example (cont-d)…
¢  A distinguishing sequence

for S ⊕ M1 can be
 α = i2i1i2
¢  Moreover, α = i2i1i2 is a

distinguishing sequence
 for S ⊕ M2

 The test suite TS for
FD = {M1, M2} is TS = {i2i1i2}

S

M1 M2

92

How trees can be used for
testing (in context)

o  What if S has a specific structure?

o  S can still be

-  Complete or partial

-  Deterministic or non-deterministic

-  Observable or non-observable

BUT: S diagram has a tree structure!

This fact simplifies the test derivation

93

When S has a tree structure

Input: FSM S with a tree diagram
Output: A test TS for S or a corresponding message
Step 1 i = 0
Step 2 Derive a mutant Mi in the lexicographical order for the

FSM S
Derive a separating sequence α for an FSM Mi ⊕ S
by covering the faulty transition and going down the branch until

Mi and S output reactions do not coincide
If there is no separating sequence for the FSM Mi ⊕ S, then
Return a corresponding message
Otherwise,
If α ∉ TS then add α into the test suite TS

 i++, and go to Step 2

94

Any other restrictions on the
Context

What if the initial state of the Context is unknown?

Emb Context
U

V

Test
sequences

responses

Channels U and V are not observable

⇓

FSM specification for Context is nondeterministic

⇓

One needs to first set the Context into a known state and then apply the test
sequences

95

Homing sequences for
nondeterministic FSMs

¢  The sequence α allows to
detect the final state of the
machine under experiment
after α application

¢  After applying α at any state
si and observing an output
response βi the final state si ʹ′
becomes known

…

α/β1

s1 s2 sm

s1ʹ′ s2ʹ′ smʹ′

α/β2
α/βm

Homing sequence α

apply α + observe βi + draw a conclusion about si ʹ′

BUT! We saw the very (!!!) huge complexity,

so… let’s just decrease it

96

How to decrease the complexity
through adaptive experiments

o  The experiment is now represented by a Test Case

o  A Test Case is a connected single-input output-
complete observable initialized FSM with the
acyclic transition graph

Preset
experiment

Adaptive
experiment

the next input can be
chosen based on
previously observed
outputs

97

Example for homing experiment

Nondeterministic FSM
! No homing
sequence

Adaptive homing experiment
for nondeterministic FSM

98

Problem of existence of a homing test
case for a complete nondeterministic FSM

ADAPTIVE HOMING problem

Input: complete observable nondeterministic FSM
 S = (S, I, O, h), |S| = n
Question: does there exist a homing test case for the FSM S?

The problem can be reduced to that of checking if there exists
a homing test case for each pair of FSM states

Theorem. Adaptive Homing Problem for a complete
observable FSM S = (S, I, O, h), |S| = n, is in P

99

Deriving homing test cases for
nondeterministic FSMs

Given an FSM S = (S, I, O, h),
|S| = n, such that each state pair
(i, j) is adaptively homing

• We build the test case
iteratively starting from the pair
(1, 2) of states
• We add other states one by
one, to the set of initial states
(the root of the tree)
• Test cases of a type Pi,j are
used at each step

The height of the homing test case for S does not exceed O(n3)

Conclusions
¢  Theoretically: almost all the problems in software testing

and, moreover, testing in context that provide the
guaranteed fault coverage have terrible (exponential or
more!!!) complexity

¢  Practically: methods and tools for decreasing the
complexity seem to be promising

⇓

New models (or new heuristics) need to appear and new
methods and tools need to be provided to decrease

the complexity

⇓

We do have something for the future work J

100

101

Never alone…

Original results presented here were obtained in
collaboration with research groups lead by

Prof. Ana Cavalli,

Prof. Khaled El-Fakih,

Profs Alexandre Petrenko & Alexandr K. Petrenko (both, J),

PhD Stas Torgaev

…

Thank you!

